<h3><u>Answer</u>;</h3>
= F0 L ( 1 - 1/e )
<h3><u>Explanation;</u></h3>
Work done is given as the product of force and distance.
In this case;
Work done = ∫︎ F(x) dx
= F0 ∫︎ e^(-x/L) dx
= F0 [ -L e^(-x/L) ] between 0 and L
= F0 L ( 1 - 1/e )
Gravitational potential energy = mgh or mass times acceleration due to gravity times the height
Here the mass is 0.25kg, the height is 10m, and gravity is 9.8m/s^2 so...
GPE = (0.25)(10)(9.8)
GPE = 24.5 J
Answer: the waves travel in an horizontal direction while the strings vibrate in a vertical direction.
Answer:
ρ = 830.32 kg/m³
Explanation:
Given that
Oil head = 12.2 m
h= 12.2 m
Pressure P = 1.013 x 10⁵ Pa
Lets take density of the liquid =ρ
The pressure due to liquid P given as
P = ρ g h
Now by putting the all values in the above equation
1.013 x 10⁵ Pa = ρ x 10 x 12.2 ( take g =10 m/s²)
ρ = 830.32 kg/m³
Therefore the density of oil is 830.32 kg/m³
Answer:

Explanation:
By Einstein's Equation of photoelectric effect we know that

here we know that
= energy of the photons incident on the metal
= minimum energy required to remove photons from metal
= kinetic energy of the electrons ejected out of the plate
now we know that it requires 351 nm wavelength of photons to just eject out the electrons
so we can say

here we know that

now we have

now by energy equation above when photon of 303 nm incident on the surface




