No temperature change occurs from heat transfer if ice melts and becomes liquid water (i.e., during a phase change). For example, consider water dripping from icicles melting on a roof warmed by the Sun. Conversely, water freezes in an ice tray cooled by lower-temperature surroundings.
Hope this helped you
Answer:
N = 177843 sheets
Explanation:
We are given;
Mass;m = 0.0035 kg
Pressure; p = 101325 pa = 101325 N/m²
L = 0.279m
W = 0.216m
The weight of N sheets is N(mg)
Where;
m is the mass of one sheet
N is number of sheets
g is the acceleration due to gravity.
The pressure equals weight divided by the area on which the weight presses:
Thus,
p= F/A = Nmg/(L•W)
Therefore, making N the subject;
N = pLW/(mg)
N = 101325 x 0.279 x 0.216/ (0.0035 x 9.81)
N = 177843
Answer:
4 m/s
Explanation:
Momentum is defined as:

where
m is the mass of the object
v is its velocity
For the object in this problem, we know:
p = 200 kg m/s is the momentum
m = 50 kg is the mass
Solving for the velocity, we find:

Decreases, stays the same, increases.
The volume decreases because as air is cooled, the individual molecules collectively possess less kinetic energy and the distances between them decrease, thus leading to a decrease in the volume they occupy at a certain pressure (please note that my answer only holds under constant pressure; air, as a gas, doesn't actually have a definite volume).
The mass stays the same because physical processes do not create or destroy matter. The law of conservation of mass is obeyed. You're only cooling the air, not adding more air molecules.
The density decreases because as the volume decreases and mass stays the same, you have the same mass occupying a smaller volume. Density is mass divided by volume, so as mass is held constant and volume decreases, density increases.