<span>A vector which implies that an
object has been moved or has changed its position is called displacement.
Displacement is usually associated with length and direction of an imaginary
straight point. It is the shortest distance from the initial point to the final
point of final position (P). Displacement can also be described as the length
between the final and initial point on the shortest path. It means an overall change
in direction of the object or point of a
body.</span>
28 times stronger than the force of gravity on the surface of the Earth.
Answer:
B. He should change the lengths of the vectors that point tangent to the circle so that each is the same length.
Explanation:
A uniform circular motion is a motion in a circle where the tangential speed of the object is constant.
In the motion map:
- The arrows pointing towards the centre of the circle represent the centripetal acceleration, and their length represent the magnitude of the acceleration
- The arrows pointing tangential to the circle represent the tangential speed, and their length represent the magnitude of the speed
In this motion map, we see that the length of the vectors pointing tangent to the circle is not constant: this means that the speed is not constant. In order to have a uniform circular motion, the speed must be constant, therefore the lengths of the vectors that point tangent to the circle must be the same.
<span>If you have only two
data from two recording stations then you will be having a hard time finding
the correct location of the epicenter. This is because triangulation method requires
3 recording station. If you have 2 recording station, the 2 circles will
intersect at 2 points giving you 2 locations that could possibly be the
epicenter.</span>
Answer:
Explanation:
We know that Impulse = force x time
impulse = change in momentum
change in momentum = force x time
Force F = .285 t -.46t²
Since force is variable
change in momentum = ∫ F dt where F is force
= ∫ .285ti - .46t²j dt
= .285 t² / 2i - .46 t³ / 3 j
When t = 1.9
change in momentum = .285 x 1.9² /2 i - .46 x 1.9³ / 3 j
= .514i - 1.05 j
final momentum
= - 3.1 i + 3.9j +.514i - 1.05j
= - 2.586 i + 2.85j
x component = - 2.586
y component = 2.85