Answer:
4.44 rpm
Explanation:
= Angular speed
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
r = Radius of Europa = 
R = Radius of arm = 6 m
The acceleration due to gravity is given by

Here the centripetal acceleration of the arm and acceleration due to gravity are equal


Converting to rpm


The angular speed of the arm is 4.44 rpm
Answer:
<em>The end of the ramp is 38.416 m high</em>
Explanation:
<u>Horizontal Motion
</u>
When an object is thrown horizontally with an initial speed v and from a height h, it follows a curved path ruled by gravity.
The maximum horizontal distance traveled by the object can be calculated as follows:

If the maximum horizontal distance is known, we can solve the above equation for h:

The skier initiates the horizontal motion at v=25 m/s and lands at a distance d=70 m from the base of the ramp. The height is now calculated:


h= 38.416 m
The end of the ramp is 38.416 m high
Answer:
The speed of light changes as it moves between media. This causes refraction. Angles of refraction can be calculated using known speeds or wavelengths. Beyond the critical angle, light is reflected.
Answer:
276.135 J
Explanation:
Given that:
mass of Fe = 30.0 g
initial temperature = 24.5°C
final temperature = 45.0°C
specific heat of Fe = 0.449 J/g°C
We can determine the thermal energy added by using the formula;
Q = mcΔT
Q = 30.0g × 0.449 J/g°C × (45.0 - 24.5)°C
Q = 276.135 J
You can calculate potential energy by:
U = m.g.h
Where, U = potential energy
m = mass
g = acceleration due to gravity
h = height
Hope this helps!