1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
klemol [59]
3 years ago
14

If all the stars in an elliptical galaxy traveled random directions in their orbits, the elliptical galaxy would be type

Physics
1 answer:
Lemur [1.5K]3 years ago
7 0

The answer would be E7. Galaxies categorized as E0 look to be nearly perfect, while those registered as E7 seem much extended than they are widespread. It is worth noting, though, that a galaxy's look is connected to how it lies on the sky when viewed from Earth. An E7 galaxy is very long and thin or the flattest of them all. 

You might be interested in
An aluminum cylinder with a radius of 2.7 cm and a height of 67 cm is used as one leg of a workbench. The workbench pushes down
soldier1979 [14.2K]

Answer:

1.9\times 10^{-4}

1.2\times 10^{-4}\ m

Explanation:

r = Radius = 2.7 cm

F = Force = 3.2\times 10^4\ N

A = Area = \pi r^2

\sigma = Stress = \frac{F}{A}

E = Young's modulus = 7\times 10^{10}\ Pa

\epsilon = Strain

L_0 = Original length = 67 cm

\Delta L = Change in length

Young's modulus is given by

E=\frac{\sigma}{\epsilon}\\\Rightarrow \epsilon=\frac{\sigma}{E}\\\Rightarrow \epsilon=\frac{\frac{3.2\times 10^4}{\pi 0.027^2}}{7\times 10^{10}}\\\Rightarrow \epsilon=0.0001996=1.9\times 10^{-4}

Strain is 1.9\times 10^{-4}

Strain is given by

\epsilon=\frac{\Delta L}{L_0}\\\Rightarrow \Delta L=\epsilon\times L_0\\\Rightarrow \Delta L=1.9\times 10^{-4}\times 0.67\\\Rightarrow \Delta L=0.0001273\\\Rightarrow \Delta L=1.2\times 10^{-4}\ m

The cylinder height decreases by 1.2\times 10^{-4}\ m

3 0
3 years ago
Name each type of symbiosis and explain how the two species are affected
disa [49]
Frogs
snakes if there food chain is mesesed up it dont work no more

7 0
3 years ago
A hockey player uses her hockey stick to exert a force of 6.81 N on a stationary hockey puck. The hockey puck has a mass of 165
Anna007 [38]

Answer:

41.3 m/s^2 option (e)

Explanation:

force, F = 6.81 N

mass, m = 165 g = 0.165 kg

Let a be the acceleration of the puck.

Use newtons' second law

Force = mass x acceleration

6.81 = 0.165 x a

a = 41.27 m/s^2

a = 41.3 m/s^2

Thus, the acceleration of the puck is 41.3 m/s^2.

5 0
3 years ago
what is the approximate weight of a 20-kg cannonball on the moon if the acceleration due to gravity is 1.6m/s^2
monitta
On Earth, a cannonball with a mass of 20 kg would weigh 196 Newtons.
With the formula F=mg, where F is the weight in Newtons, m is the mass, and g is the acceleration due to gravity on the Earth which is 9.8m/s^2.
F=20kg x 9.8m/s^2= 196 Newtons

BUT on the moon, acceleration due to gravity is 1.6 m/s^2,
so F=mg=20kgx1.6m/s^2= 32 N
5 0
3 years ago
A football is kicked from the ground with a velocity of 38m/s at an angle of 40 degrees and eventually lands at the same height.
Anastasy [175]

Initially, the velocity vector is \langle 38cos(40^{\circ}),38sin(40^{\circ}) \rangle=\langle 29.110, 24.426 \rangle. At the same height, the x-value of the vector will be the same, and the y-value will be opposite (assuming no air resistance). Assuming perfect reflection off the ground, the velocity vector is the same. After 0.2 seconds at 9.8 seconds, the y-value has decreased by 4.9(0.2)^2, so the velocity is \langle 29.110, 24.426-0.196 \rangle = \langle 29.110, 24.23 \rangle.

Converting back to direction and magnitude, we get \langle r,\theta \rangle=\langle \sqrt{29.11^2+24.23^2},tan^{-1}(\frac{29.11}{24.23}) \rangle = \langle 37.87,50.2^{\circ}\rangle

4 0
3 years ago
Other questions:
  • A sharp edged orifice with a 50 mm diameter opening in the vertical side of a large tank discharges under a head of 5m. If the c
    13·1 answer
  • Which term describes an experiment with one dependent variable and one experimental variable
    12·2 answers
  • What must the charge (sign and magnitude) of a 1.45-g particle be for it to remain stationary when placed in a downward-directed
    13·1 answer
  • Particle A of charge 2.79 10-4 C is at the origin, particle B of charge -5.64 10-4 C is at (4.00 m, 0), and particle C of charge
    13·1 answer
  • It took 1.5 hours for a bus to go from one city to the next. The bus traveled at an average velocity of 52mph, west. How far apa
    12·2 answers
  • Why is light-year not related to time? (I just need scientific evidence why it isn't related to time)
    7·1 answer
  • Fill in the blank.
    12·2 answers
  • A 4.00 kg block is pushed along the ceiling with a constant applied force of 85.0 N that acts at an angle of 55.0 degrees with t
    12·1 answer
  • Which element accumulates in the environment due to the use of
    10·1 answer
  • 100 POINTS 100 POINTS 100 POINTS!!!!!<br> HELP PLEASE I DON'T KNOW WHAT TO DO!!!!!
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!