Answer:
d) It will be cut to a fourth of the original force.
Explanation:
The magnitude of the electrostatic force between the charged objects is

where
k is the Coulomb's constant
q1 and q2 are the charges of the two objects
r is the separation between the two objects
In this problem, the initial distance is doubled, so
r' = 2r
Therefore, the new electrostatic force will be

So, the force will be cut to 1/4 of the original value.
Answer:

Explanation:
You calculate the energy required to break all the bonds in the reactants.
Then you subtract the energy needed to break all the bonds in the products.
N₂ + O₂ ⟶ 2NO
N≡N + O=O ⟶ 2O-N=O
Bonds: 2N≡N 1O=O 2N-O + 2N=O
D/kJ·mol⁻¹: 941 495 201 607

The work done on the filled bucket in raising out of the hole is 2, 925 Joules
<h3>How to determine the work done</h3>
Using the formula:
Work done = force * distance
Note that force = mass * acceleration
F = mg + ma
F = 4. 5 * 10 + 28 * 10
F = 45 + 280
F = 325 Newton
Distance = 9m
Substitute into formula
Work done = 325 * 9
Work done = 2, 925 Joules
Therefore, the work done is 2, 925 Joules
Learn more about work done here:
brainly.com/question/25573309
#SPJ1
Answer:
The gravitational force on the elevator = 4500N
Explanation:
The given parameters are;
The force applied by the elevator, F = 4500 N
The acceleration of the elevator = Not accelerating
From Newton's third law of motion, the action of the cable force is equal to the reaction of the gravitational force on the elevator which is the weight, W and motion of the elevator as follows;
F = W + Mass of elevator × Acceleration of elevator
∴ F = W + Mass of elevator × 0 = W
F = 4500 N = W
The net force on the elevator is F - W = 0
The gravitational force on the elevator = W = 4500N.
Meters it the SI unit for measuring length.