Well, first of all, a car moving around a circular curve is not moving
with uniform velocity. The direction of motion is part of velocity, and
the direction is constantly changing on a curve.
The centripetal force that keeps an object moving in a circle is
Force = (mass of the object) · (speed)² / (radius of the circle)
F = m s² / r
We want to know the radius, to rearrange the formula to give us
the radius as a function of everything else.
F = m s² / r
Multiply each side by 'r': F· r = m · s²
Divide each side by 'F': r = m · s² / F
We know all the numbers on the right side,
so we can pluggum in:
r = m · s² / F
r = (1200 kg) · (20 m/s)² / (6000 N) .
I'm pretty sure you can finish it up from here.
Answer:
437 J
Explanation:
Parameters given:
Weight of child, W = 230 N
Height of swing, h = 1.9 m
Gravitational Potential Energy is given as:
P. E. = m*g*h = W*h
m = mass
h = height above the ground
W = weight
P. E. = 230 * 1.9
P. E. = 437 J
Complete Question
Part of the question is shown on the first uploaded image
The rest of the question
What is (Fnet3)x, the x-component of the net force exerted by these two charges on a third charge q3 = 55.0 nC placed between q1 and q2 at x3 = -1.220 m ? Your answer may be positive or negative, depending on the direction of the force. Express your answer numerically in newtons to three significant figures.
Answer:
The net force exerted on the third charge is
Explanation:
From the question we are told that
The third charge is 
The position of the third charge is 
The first charge is 
The position of the first charge is 
The second charge is 
The position of the second charge is
The distance between the first and the third charge is


The force exerted on the third charge by the first is

Where k is the coulomb's constant with a value 
substituting values
The distance between the second and the third charge is


The force exerted on the third charge by the first is mathematically evaluated as
substituting values

The net force is
substituting values

The answer is a) Teres Major Muscle
Your "weight" is the name you give to that gravitational force.
So your question actually says:
"Your weight just got three times stronger !
What happens to your weight ?"