C
because an object need to be in motion to make any kind of movement
You can compare the velocity of the car, 60 mph, with the velocity that a mass would acquire when falls from certain height.
First, convert 60 mph to m/s:
60 miles/h * 1.60 km/mile * 1000 m/km * 1h/3600s = 26.67 m/s
Second, calculate from what height a body in free fall reachs 26.67 m/s velocity when hits the floor.
free fall => Vf^2 = 2g*H => H = Vf^2 / (2g)
H = (26.67m/s)^2 / (2*9.8 m/s) = 36.2 m
If you consider that the height between the floors of a building is approximately 3.6 m, you get 36.2 m / 3.6 m/floor = 10 floors.
Then, you conclude that the force of impact is the same as driving you vehicle off a 10 story building.
Answer:
(a) a= 0.139 m/s²
(b) d= 4.45 m
(c) vf= 1.1 m/s
Explanation:
a) We apply Newton's second law:
∑F = m*a Formula (1)
∑F : algebraic sum of the forces in Newton (N)
m : mass (kg)
a : acceleration (m/s²)
Data
F₁= +2.05 * 10³ N : forward push by a motor
F₂= -1.87* 10³ N : resistive force due to the water.
m= 1300 kg
Calculation of the acceleration of the boat
We replace data in the formula (1):
∑F = m*a
F₁+F₂= m*a


a= 0.139 m/s²
b) Kinematics of the boat
Because the boat moves with uniformly accelerated movement we apply the following formulas:
d= v₀t+ (1/2)*a*t² Formula (2)
vf= v₀+at Formula (3)
Where:
d:displacement in meters (m)
t : time interval (s)
v₀: initial speed (m/s)
vf: final speed (m/s)
a: acceleration (m/s²
)
Data
v₀ = 0
a= 0.139 m/s²
t = 8 s
Calculation of the distance traveled by the boat in 8 s
We replace data in the formula (2)
d= v₀t+ (1/2)*a*t²
d= 0+ (1/2)*(0.139)*(8)²
d= 4.45 m
c) Calculation of the speed of the boat in 8 s
We replace data in the formula (3):
vf= v₀+at
vf= 0+( 0.139)*(8)
vf= 1.1 m/s
-- If acceleration and velocity are in the same direction,
then the object is speeding up.
-- If acceleration and velocity are in opposite directions,
then the object is slowing down.
-- If acceleration is perpendicular to velocity, then the object
is moving on a circular curve at constant speed.
Answer:
b) 2.2 kg
Explanation:
Net force acting on an object is the sum of the two forces acting on the body.
The net force is calculated using the parallelogram law of vectors.
F =
Here A = 20 N , B = 35 N and θ =80°
Net Force = F = 43.22 N
Acceleration = a = 20 m/s/s
Since F = ma, m = F/a = 43.22 / 20 = 2.161 kg = 2.2 kg