Answer: The answer is A. - 4.88x10^20 H2O2 molecules
Explanation: I hope this helps!
Find your answer in the explanation below.
Explanation:
PV = nRT is called the ideal gas equation and its a combination of 3 laws; Charles' law, Boyle's law and Avogadro's law.
According to Boyle's law, at constant temperature, the volume of a gas is inversely proportional to the pressure. i.e V = 1/P
From, Charles' law, we have that volume is directly proportional to the absolute temperature of the gas at constant pressure. i.e V = T
Avogadro's law finally states that equal volume of all gases at the same temperature and pressure contain the same number of molecules. i.e V = n
Combining the 3 Laws together i.e equating volume in all 3 laws, we have
V = nT/P,
V = constant nT/P
(constant = general gas constant = R)
V = RnT/P
by bringing P to the LHS, we have,
PV = nRT.
Q.E.D
Mutual
They are balanced steadily which means they’re at the same point
The mass of sodium sulfite that was used will be 1,890 grams.
<h3>Stoichiometric problems</h3>
First, the equation of the reaction:

The mole ratio of SO2 produced and sodium sulfite that reacted is 1:1.
Mole of 960 grams SO2 = 960/64 = 15 moles
Equivalent mole of sodium sulfite that reacted = 15 moles
Mass of 15 moles sodium sulfite = 15 x 126 = 1,890 grams
More on stoichiometric problems can be found here: brainly.com/question/14465605
#SPJ1