Answer:
342 m/s
Explanation:
The velocity of sound in air is approximated as:
v ≈ 331.4 + 0.6 T
where v is the velocity in m/s and T is the temperature in Celsius.
At T = 18:
v ≈ 331.4 + 0.6 (18)
v ≈ 342.2
The velocity is approximately 342 m/s.
If an electron, a proton, and a deuteron move in a magnetic field with the same momentum perpendicularly, the ratio of the radii of their circular paths will be:
<h3>How is the ratio of the perpendicular parts obtained?</h3>
To obtain the ratio of the perpendicular parts, one begins bdy noting that the mass of the proton = 1m, the mass of deuteron = 2m, and the mass of the alpha particle = 4m.
The ratio of the radii of the parts can be obtained by finding the root of the masses and dividing this by the charge. When the coefficients are substituted into the formula, we will have:
r = √m/e : √2m/e : √4m/2e
When resolved, the resulting ratios will be:
1: √2 : 1
Learn more about the radii of their circular paths here:
brainly.com/question/16816166
#SPJ4
Answer:
Imp = 25 [kg*m/s]
v₂= 20 [m/s]
Explanation:
In order to solve these problems, we must use the principle of conservation of linear momentum or momentum.
1)

where:
m₁ = mass of the object = 5 [kg]
v₁ = initial velocity = 0 (initially at rest)
F = force = 5 [N]
t = time = 5 [s]
v₂ = velocity after the momentum [m/s]
![(5*0) +(5*5) = (m_{1}*v_{2}) = Imp\\Imp = 25 [kg*m/s]](https://tex.z-dn.net/?f=%285%2A0%29%20%2B%285%2A5%29%20%3D%20%28m_%7B1%7D%2Av_%7B2%7D%29%20%3D%20Imp%5C%5CImp%20%3D%2025%20%5Bkg%2Am%2Fs%5D)
2)
![(m_{1}*v_{1})+(F*t)=(m_{1}*v_{2})\\(0.075*0)+(30*0.05)=(0.075*v_{2})\\v_{2}=20 [m/s]](https://tex.z-dn.net/?f=%28m_%7B1%7D%2Av_%7B1%7D%29%2B%28F%2At%29%3D%28m_%7B1%7D%2Av_%7B2%7D%29%5C%5C%280.075%2A0%29%2B%2830%2A0.05%29%3D%280.075%2Av_%7B2%7D%29%5C%5Cv_%7B2%7D%3D20%20%5Bm%2Fs%5D)
False?
science can be a motivation out of curiosity AND societal needs.
For example:battery operated cars, are a curiosity and beneficial to the earths environment
A then B, as everything is made of energy and energy pushes the electro magnetic waves into the brain.