The van 't Hoff factor is the ratio between the actual concentration of particles produced when the substance is dissolved and the concentration of a substance as calculated from its mass. For most non-electrolytes dissolved in water, the van 't Hoff factor is essentially 1.
<h3>What is the value of Van t Hoff factor?</h3>
For most non-electrolytes dissolved in water, the Van 't Hoff factor is essentially $ 1 $ . For most ionic compounds dissolved in water, the Van 't Hoff factor is equal to the number of discrete ions in a formula unit of the substance.
<h3>Which has highest Van t Hoff factor?</h3>
The Van't Hoff factor will be highest for
A. Sodium chloride.
B. Magnesium chloride.
C. Sodium phosphate.
D. Urea.
Learn more about van't off factor here:
<h3>
brainly.com/question/22047232</h3><h3 /><h3>#SPJ4</h3>
Answer:
d
Explanation:
Generally, it is transported through pipes so I think statement d is incorrect.
Explanation:
In order to go from mass of magnesium to atoms of magnesium, we have to do two things:
Convert mass of Mg to moles of Mg using the molar mass of Mg as a conversion factor
Convert moles of Mg to atoms of Mg using Avogadro's number (6.02×1023) as a conversion factor
Step 1:
Before we start, I should note that the molar mass of Mg is 24.31gmol. We can go from mass to moles using dimensional analysis. The key to dimensional analysis is understanding that the units that you don't need any more cancel out, leaving the units that are desired:
48.60g
×1mol24.31g
=2.00mol
Step 2:
We'll use this relationship:
www.sprinklernewz.uswww.sprinklernewz.us
Using the moles of Mg that we just obtained, we can use Avogrado's number to perform dimensional analysis in order to cancel out units of mol to end up with atoms of Mg:
2.00mol
×6.02×1023atoms1mol
=1.204×1024atoms
Thus, 48.60g of Mg is equivalent to 1.204×1024atoms
Hope this helped :)
Answer:
double replacement (Mutual exchange of ions)
Explanation:
GOOD LUCK FOR THE FUTURE! :)
Answer:
The answer to the question is yes