Answer:
Option A, The Rutherford experiment proved the Thomson "plum-pudding" model of the atom to be essentially correct.
Explanation:
Thomson's plum pudding model:
Plum pudding model was proposed by J.J Thomson. In Thomson's model, atoms are proposed as sea of positively charge in which electrons are distributed through out.
Result of Rutherford experiment:
As per Rutherford's experiment:
Most of the space inside the atom is empty.
Positively charge of the atom are concentrated in the centre of the atom known as nucleus.
Electrons are present outside the nucleus and revolve around it.
As it is clear that, result of Rutherford experiment did not supported the Thomson model.
Answer:
sorry pic wont work
Explanation:
i can help if you get the pic to work
Answer:
Taking into account the definition of average atomic mass and isotopes of an element, the information that you need is the masses of its isotopes and their percent abundances.
Each chemical element is characterized by the number of protons in its nucleus, which is called the atomic number Z.
But in the nucleus of each element it is also possible to find neutrons, whose number can vary. The atomic mass (A) is obtained by adding the number of protons and neutrons in a given nucleus.
The same chemical element can be made up of different atoms, that is, their atomic numbers are the same, but the number of neutrons is different. These atoms are called isotopes of the element.
The atomic mass of an element is the weighted average mass of its natural isotopes. Therefore, the atomic mass of an element is not a whole number.
The weighted average means that not all isotopes have the same percentage.
In other words, the atomic masses of chemical elements are usually calculated as the weighted average of the masses of the different isotopes of each element, taking into account the relative abundance of each of them.
Explanation:
The number of atoms : N = 2.709 x 10⁴⁶
<h3>Further explanation</h3>
Given
4.5 x 10²² moles of CO₂
Required
The number of atoms
Solution
The mole is the number of particles(molecules, atoms, ions) contained in a substance
1 mol = 6.02.10²³ particles
Can be formulated
N=n x No
N = number of particles
n = mol
No = Avogadro's = 6.02.10²³
Input the value :
N = 4.5 x 10²² x 6.02 x 10²³
N = 2.709 x 10⁴⁶
Answer:
One gallon of octane produces approximately 7000 L of carbon dioxide.
Note:
I believe that the mass of octane should have been given as 2661 g. However, I understand that your instructor probably gave you this problem, so I will use 4000 g for the approximate mass of one gallon of octane. You can rework the problem on your own, substituting the correct masses of octane if you wish.
Step1. You must first determine the number of moles that are in 4000 g of octane, using the molar mass of octane. Step 2. Then you must determine the number of moles of carbon dioxide that can be produced by that number of moles of octane, based on the mole ratio between octane and carbon dioxide in the balanced equation. Step 3. Then use the ideal gas law to determine the volume in liters of carbon dioxide that can be formed.