Answer:
R = 715.4 N
L = 166.6 N
Explanation:
ASSUME the painter is standing right of center
Let L be the left rope tension
Let R be the right rope tension
Sum moments about the left end to zero. Assume CCW moment is positive
R[5] - 20(9.8)[5/2] - 70(9.8)[5/2 + 2] = 0
R = 715.4 N
Sum moments about the right end to zero
20(9.8)[5/2] + 70(9.8)[5/2 - 2] - L[5] = 0
L = 166.6 N
We can verify by summing vertical forces
116.6 + 715.4 - (70 + 20)(9.8) ?=? 0
0 = 0 checks
If the assumption about which side of center the paint stood is incorrect, the only difference would be the values of L and R would be swapped.
When you draw an illustration for this problem, you would come up with the same drawing as shown in the picture. As the hot-air balloon travels upwards, there is a slight time when the bag of sand rises up until it reaches the maximum height. Then, it goes back down to the ground. The total time would be t₁ + t₂. The solution is as follows:
H = v₀²/2g = (2.45)²/2(9.81) = 0.306 m
t₁ = H/v₀ = 0.306 m/2.45 m/s = 0.125 s
t₂ = √2(H + 98.8)/g = √2(0.306+ 98.8)/9.81
t₂ = 4.495 s
Total time = 0.125 s + 4.495 s = 4.62 seconds
Explanation :
There are two types of collision i.e. elastic and elastic collision.
- Elastic collision : In this type of collision, the total momentum and the kinetic energy of the particles remains constant.
- Inelastic collision : In this type of collision, only the momentum remains constant while there is some loss of kinetic energy occurs.
From Newton's second law,
F = m a
a is the rate of change of velocity.

There is a inverse relation between the force and the time of collision.
The change in <em><u>momentum</u></em> will remain the same during a collision, the force needed to bring an object to a stop can be <em><u>increased</u></em> if the time of the collision is <u><em>decreased</em></u>.
Answer:
light itself doesn't have a shadow
Explanation:
light emits light to where things around the light may create the shadows