Explanation:
Given that,
Initial speed of the bus, u = 0
Acceleration of the bus, a = 0.5 m/s²
Let v is the velocity at the end of 2 minutes. The change in velocity divided by time equals acceleration.
So,

Let d is the distance cover during that time. So,

So, the final speed is 60 m/s and the distance covered during that time is 3600 m.
Answer:
anywhere between 100000 to about 400000 human years .
Explanation:
The number of cycles of a periodic wave per unit time is called the wave's "frequency". The height at which the peaks of the waves reside is the "amplitude".
Answer:
The Balmer series refers to the spectral lines of hydrogen, associated to the emission of photons when an electron in the hydrogen atom jumps from a level
to the level
.
The wavelength associated to each spectral line of the Balmer series is given by:

where
is the Rydberg constant for hydrogen, and where
is the initial level of the electron that jumps to the level n = 2.
The first few spectral lines associated to this series are withing the visible part of the electromagnetic spectrum, and their wavelengths are:
656 nm (red, corresponding to the transition
)
486 nm (green,
)
434 nm (blue,
)
410 nm (violet,
)
All the following lines lie in the ultraviolet part of the spectrum. The limit of the Balmer series, corresponding to the transition
, is at 364.6 nm.
-- Speed = (distance) / (time to cover the distance) = 840/2.5 = 336 m/s
-- Frequency = (speed) / (wavelength) = 336/0.70 = 480 Hz.