Answer:
The new partial pressures after equilibrium is reestablished for
:

The new partial pressures after equilibrium is reestablished
:

The new partial pressures after equilibrium is reestablished for
:

Explanation:

At equilibrium before adding chlorine gas:
Partial pressure of the 
Partial pressure of the 
Partial pressure of the 
The expression of an equilibrium constant is given by :


At equilibrium after adding chlorine gas:
Partial pressure of the 
Partial pressure of the 
Partial pressure of the 
Total pressure of the system = P = 263.0 Torr




At initail
(13.2) Torr (32.8) Torr (13.2) Torr
At equilbriumm
(13.2-x) Torr (32.8-x) Torr (217.0+x) Torr


Solving for x;
x = 6.402 Torr
The new partial pressures after equilibrium is reestablished for
:

The new partial pressures after equilibrium is reestablished
:

The new partial pressures after equilibrium is reestablished for
:

Here's my best guess
the volume of the unit cell is (385*10^-12)^3=5.7066*10^-29 m^3
multiply by density to get mass
mass = (7 g/cm^3)*(100^3 cm^3 / 1^3 m^3) * 5.7066*10^-29 m^3= 3.99466*10^-22 g
covert to moles
3.99466*10^-22 g * 1 mol / 239.82 g = 1.6657 *10^-24 mol
convert to number of units
1.6657 *10^-24 mol * 6.23*10^23 units/mol = 1.04
385 pm = 3.85*10^(-8) cm
The volume of the unit cell is the cube of that, which is 5.71*10^(-23) cm^3. Since the ratio of mass to volume (i.e. the density) must be the same no matter what amount of TlCl you have, you can say:
7 = x/(5.71*10^(-23)), where x is the mass of the unit cell. Solving for x, you get 4*10^(-22) g.
The mass of a molecule of TlCl is 240 amu, which in grams is 4*10^(-22) g. The mass of the unit cell and the mass of a molecule of TlCl is the same. Therefore there is one formula unit of TlCl per unit cell.
4452 Meters because 1484 times 3
The balanced chemical reaction describing this decomposition is as follows:
<span>4c3h5n3o9 .............> 6N2 + 12CO2 +10H2O + O2
From the periodic table:
mass of oxygen = 16 grams
mass of nitrogen = 14 grams
mass of hydrogen = 1 gram
mass of carbon = 12 grams
Therefore:
mass of </span><span>C3H5N3O9 = 3(12) + 5(1) + 3(14) + 9(16) = 227 grams
mass of O2 = 2(16) = 32 grams
From the balanced chemical equation:
4(227) = 908 grams of </span>C3H5N3O9 produce 32 grams of O2. Therefore, to know the amount of oxygen produced from 4.5*10^2 grams <span>C3H5N3O9, all we need to do is cross multiplication as follows:
amount of oxygen = (4.5*10^2*32) / (908) = 15.859 grams</span>
Answer:
0.11mol/dm³
Explanation:
The reaction expression is given as:
HCl + NaOH → NaCl + H₂O
Volume of acid = 25cm³ = 0.025dm³
Volume of base = 18.4cm³ = 0.0184dm³
Concentration of base = 0.15mol/dm³
Solution:
The concentration of hydrochloric acid = ?
To solve this problem, let us first find the number of moles of the base;
Number of moles = concentration x volume
Number of moles = 0.15mol/dm³ x 0.0184dm³ = 0.00276mol
From the balanced reaction equation;
1 mole of NaOH will combine with 1 mole of HCl
Therefore, 0.00276mol of the base will combine with 0.00276mol of HCl
So;
Concentration of acid =
=
= 0.11mol/dm³