Answer:
c. Atoms of two or more elements bond together
Explanation:
a chemical reactions forms products ( new substances); where it rearranges themselves to form new bonds.
Answer:
The presence of 1-2% ethanol as catalyst, suppresses the oxidation of chloroform with oxygen to give a poisonous gas called phosgene. ... Here glycerol acts as negative catalyst. Criteria or characteristics of catalysts. i. The mass and chemical composition of catalyst should remain unchanged at the end of the reaction.
Explanation:
Because the physical appearance change hope this helps
<span />
Answer:
The correct answer is "Iron and oxygen act as Fe3+ and O2− ions respectively, forming rust (Fe₂O₃) in the presence of water by the formation of an ionic bond".
Explanation:
Rust is formed when iron reacts with oxygen in the presence of water (either if the iron is submerged or exposed to moisture in the air), forming the chemical compound Fe₂O₃. The presence of water is needed for rust formation because iron and oxygen act as ions when they are exposed to water, particularly Fe3+ and O2− ions respectively. The bond formed between these two elements are ionic bonds, because it is comprised of the reaction between a metal (iron) and a non-metal (oxygen).
Answer:
Chlorine is more likely to steal a valence electron from sodium.
Explanation:
Sodium is number 11 on the periodic table with one valence electron. Belonging to the first group, it's one of the alkali metal, which are known to be highly reactive. Chlorine is number 17 with seven valence electrons, and it's in the second-to-last group of halogens--also very reactive.
Considering that elements with one valence electron are just about 100% likely to give up electrons to reach a stable state, sodium would be the element that is more likely to lose its valence electron to chlorine. In other words, chlorine would be the electron thief.