Answer:
5.42g, 71.77%
Explanation:

First, we have to write out the balanced chemical equation. The unbalanced equation can be written as “SO2+O2 -> SO3” and to balance it, we can see that having two mols of SO2 and two mols of SO3 will make each side have the same amount of mols per element on each side. So the balanced chemical equation is “2SO2 + O2 -> 2SO3”
Now, we want to solve for the theoretical yield in grams of SO3. To do this, we have to use dimensional analysis. We convert g SO2 into mols SO2 using the molar mass of the elements. Then we convert mols of SO2 into mols of SO3 using the balanced equation. Once we’ve done that, we can convert mols of SO3 into grams of SO3.
You should know how to look up the molar mass of elements on the periodic table by now. Find the masses and set up the terms so they cancel like so:

Doing the math, we get 5.42g so3 as the theoretical yield. This is the most amount that you could ever get if the world was a perfect place. But alas, it isn’t and mistakes are gonna happen, so the number is going to be less than that. So the best we can do, is to figure out the percent yield that we got.
In a lab scenario, this was calculated to be 3.89 g as stated by the problem. The percent composition formula is

and plugging the numbers into it, we get:

make sure to follow the decimal/significant figure rules of your instructor, but only round at the end. My professor didn't care too much thankfully, but some professors do
Answer:
31
Explanation:
In order for an atom to have a neutral charge, it needs to have the same number of protons and electrons. You can see by the illustration that the atomic number is 31, so this element has 31 protons. Knowing that, we also know that it must have 31 electrons to be neutral.
Answer is: dipole-induced dipole interactions.
Intermolecular forces are the forces between molecules or particles.
There are several types of intermolecular forces: hydrogen bonding, ion-induced dipole forces, ion-dipole forces and van der Waals forces.
A dipole-induced dipole interaction is a weak attraction that results when a polar molecule induces a dipole in a nonpolar molecule by disturbing the arrangement of electrons in the nonpolar species.
Answer:
1455.6
Explanation: you first convert 2250ml to l by dividing by 1000 so you get 2.25l then you use Boyles law which is p1v1=p2v2 then insert values
35.75*100=p2*2.25 then divide both sides by 2.25 then you get 1455.6