Answer:
The answer is 465.6 mg of MgI₂ to be added.
Explanation:
We find the mole of ion I⁻ in the final solution
C = n/V -> n = C x V = 0.2577 (L) x 0.1 (mol/L) = 0.02577 mol
But in the initial solution, there was 0.087 M KI, which can be converted into mole same as above calculation, equal to 0.02242 mol.
So we need to add an addition amount of 0.02577 - 0.02242 = 0.00335 mol of I⁻. But each molecule of MgI₂ yields two ions of I⁻, so we need to divide 0.00335 by 2 to find the mole of MgI₂, which then is 0.001675 mol.
Hence, the weight of MgI₂ must be added is
Weight of MgI₂ = 0.001675 mol x 278 g/mol = 0.4656 g = 465.6 mg
430 g of AgCl would be needed to make a 4.0m solution with a volume of 0.75 L.
<h3>What is Molarity?</h3>
- The amount of a substance in a specific volume of solution is known as its molarity (M).
- The number of moles of a solute per liter of a solution is known as molarity.
<h3>Calculation of Required amount of AgCl</h3>
Remember that mol/L is the unit of molarity (M).
We can compute the necessary number of moles of solute by multiplying the concentration by the liters of solution, according to dimensional analysis.
0.75L×4.0M=3.0mol
Then, using the periodic table's molar mass for AgCl, convert from moles to grams:
3.0mol×143.321gmol=429.963g
The final step is to round to the correct significant figure, which in this case is two: 430g.
Hence, 430 g of AgCl would be needed to make a 4.0m solution with a volume of 0.75 L.
Learn more about Molarity here:
brainly.com/question/8732513
#SPJ4
Yes
Explanation:
On 15 February 2013, an asteroid entered Earth's atmosphere over Russia as a fireball and exploded above the city of Chelyabinsk during its passage through the Ural Mountains region.
Answer:
Explanation:
The covalent bond is the chemical bond between atoms where electrons are shared, forming a molecule. Covalent bonds are established between non-metallic elements, such as hydrogen H, oxygen O and chlorine Cl. These elements have many electrons in their outermost level (valence electrons) and have a tendency to gain electrons to acquire the stability of the electronic structure of noble gas.
The covalent bond between two atoms can be polar or nonpolar. If the atoms are equal, the bond will be nonpolar (since no atom attracts electrons more strongly). But, if the atoms are different, the bond will be polarized towards the most electronegative atom, because it will be the atom that attracts the electron pair with more force. Then it will be polar.
It can occur in a molecule that the bonds are polar and the molecule is nonpolar. This occurs because of the geometry of the molecule, which causes them to cancel the different equal polar bonds of the molecule.
In carbon tetrachloride the bonds are polar, but the tetrahedral geometry of the molecule causes all four dipoles to cancel out and the molecule to be apolar.
Answer:
Volume O₂ at STP = 50.4 Liters
Explanation:
4Al(s) + 3O₂(g) => 2Al₂O₃(s) at STP conditions
81g Al(s) = 81g/27g/mole = 3mole Al
moles O₂ consumed = 4/3(3)moles O₂ = 2.25 moles O₂ consumed
Volume O₂ at STP = 2.25moles x 22.4L/mole = 50.4 Liters O₂