Answer:
Explanation:
- For the balanced reaction:
<em>4Fe(s) + 3O₂(g) → 2Fe₂O₃(s).</em>
It is clear that 4 mol of Fe react with 3 mol of O₂ to produce 2 mol of Fe₂O₃.
- Firstly, we need to calculate the no. of moles of 35.8 grams of Fe metal:
no. of moles of Fe = mass/molar mass = (35.8 g)/(55.845 g/mol) = 0.64 mol.
- Now, we can find the no. of moles of O₂ is needed to react with the proposed amount of Fe:
<em><u>Using cross multiplication:</u></em>
4 mol of Fe is needed to react with → 3 mol of O₂, from stichiometry.
0.64 mol of Fe is needed to react with → ??? mol of O₂.
∴ The no. of moles of O₂ needed = (3 mol)(0.64 mol)/(4 mol) = 0.48 mol.
- Finally, we can get the volume of oxygen using the information:
<em>It is known that 1 mole of any gas occupies 22.4 L at standard P and T (STP).</em>
<em></em>
<em><u>Using cross multiplication:</u></em>
1 mol of O₂ occupies → 22.4 L, at STP conditions.
0.48 mol of O₂ occupies → ??? L.
∴ The no. of liters of O₂ = (0.48 mol)(22.4 L)/(1 mol) = 10.752 L.
Answer : The formula for each of the following is:
(a)
(b)
(c)
Explanation :
- Alkanes are hydrocarbon in which the carbon atoms are connected with single covalent bonds.
The general formula of alkanes is where n is the number of the carbon atoms present in a molecule of alkane.
- Alkenes are hydrocarbon in which the carbon atoms are connected with double covalent bonds.
The general formula of alkenes is where n is the number of the carbon atoms present in a molecule of alkene.
- Alkynes are hydrocarbon in which the carbon atoms are connected with triple covalent bonds.
The general formula of alkynes is where n is the number of the carbon atoms present in a molecule of alkyne.
(a) An alkane with 22 carbon atoms
Putting n = 22 in the general formula of alkane, we get the formula of alkane as, or
(b) An alkene with 17 carbon atoms
Putting n = 17 in the general formula of alkene, we get the formula of alkene as, or
(c) An alkyne with 13 carbon atoms
Putting n = 13 in the general formula of alkyne, we get the formula of alkyne as, or
Answer:
3 e⁻ transfer has occurred.
Explanation
This is a redox reaction.
- Oxidation (loss of electrons or increase in the oxidation state of entity)
- Reduction (gain of electrons or decrease in the oxidation state of the entity)
- An element undergoes oxidation or reduction in order to achieve a stable configuration. It can be an octet or duplet configuration. An octet configuration is that of outer shell configuration of noble gas.
- [Ne]= (1s²) (2s² 2p⁶)
A combination of both the reactions( Half-reactions) leads to a redox reaction.
Let us look at initial configurations of Al and Cl
[Al]= 1s² 2s² 2p⁶ 3s² 3p¹
[Cl]= 1s² 2s² 2p⁶ 3s² 3p⁵
Hence, Al can lose 3 electrons to achieve octet config.
and, Cl can gain 1e to achieve nearest noble gas config. [Ar]
This reaction can be rewritten, by clearly mentioning the oxidation states of all the entities involved.
Al⁰ + Cl⁰ → (Al⁺³)(Cl⁻)₃
Here, Aluminum is undergoing an oxidation(i.e loss of electrons) from: 0→(+3)
Chlorine undergoes a reduction half reaction (i.e gain of electrons) from: 0→(-1). There are 3 such chlorine atoms, hence 3 e⁻ transfer has occurred.
this is beta decay as the mass number stays the same but proton number changes, this is specifically beta minus as a neuron changes into a proton
Answer:
The only nonmetal in group 14 is carbon.
Explanation: