When there’s water in a department such as a lake, pound or/and ocean, the water tends to evaporated into the air and that’s how/when clouds are created. The same water from those locations are the same water that comes from the rain water, it’s a cycle that creates and takes water
Here is some different pics of a water table. I hope this is what you are looking for :). You can click the pictures to in large them.
Answer:- As per the question is asked, 35.0 moles of acetylene gives 70 moles of carbon dioxide but if we solve the problem using the limiting reactant which is oxygen then 67.2 moles of carbon dioxide will form.
Solution:- The balanced equation for the combustion of acetylene is:

From the balanced equation, two moles of acetylene gives four moles of carbon dioxide. Using dimensional analysis we could show the calculations for the formation of carbon dioxide by the combustion of 35.0 moles of acetylene.

= 
The next part is, how we choose 35.0 moles of acetylene and not 84.0 moles of oxygen.
From balanced equation, there is 2:5 mol ratio between acetylene and oxygen. Let's calculate the moles of oxygen required to react completely with 35.0 moles of acetylene.

= 
Calculations shows that 87.5 moles of oxygen are required to react completely with 35.0 moles of acetylene. Since only 84.0 moles of oxygen are available, the limiting reactant is oxygen, so 35.0 moles of acetylene will not react completely as it is excess reactant.
So, the theoretical yield should be calculated using 84.0 moles of oxygen as:

= 
Answer:
balanced equation mole ratio 5 2 mol NO/1 mol O2
10.00 g O2 3 1 mol O2/32.00 g O2 5 0.3125 mol O2
20.00 g NO 3 1 mol NO/30.01 g NO 5 0.6664 mol NO
actual mole ratio 5 0.6664 mol NO/0.3125 mol O2 5 2.132 mol NO/1.000 mol O2
Because the actual mole ratio of NO:O2 is larger than the balanced equation mole
ratio of NO:O2, there is an excess of NO; O2 is the limiting reactant.
Mass of NO used 5 0.3125 mol O2 3 2 mol NO/1 mol O2 5 0.6250 mol NO
0.6250 mol NO 3 30.01 g NO/1 mol NO 5 18.76 g NO
Mass of NO2 produced 5 0.6250 mol NO2 3 46.01 g NO2/1 mol NO2 5 28.76 g NO2
Excess NO 5 20.00 g NO 2 18.76 g NO 5 1.24 g N
Explanation: