<h3>Answer:</h3>
<u>Breaking</u> chemical bonds requires energy and <u>forming</u> chemical bonds releases energy.
<h3>Explanation:</h3>
Bond Breaking is an endothermic reaction and requires energy. This energy provided to break the bond is called as bond energy. Hence, this is a non spontaneous reaction as it doesn't takes place on its own but requires energy to break them into smaller fragments.
While, Bond Forming is an exothermic reaction. When two substances come close together the formation of bond results in the release of energy. As the resulting product is stable hence, it will be lower in energy as compared to the sum of energies of the reactants. Therefore, the surplus energy is released in the form of heat.
To solve this we assume
that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
P2 = P1V1/V2
P2 = 740mmhg x 19 mL / 30 mL
<span>P2 = 468.67 mmHg = 0.62 atm</span>
Sodium Diacetate is a compound with the formula of NaH2. it is a salt of acetic acid. it is a colorless liquid that is used in seasonings and as an antimicrobial agent.
Answer:
6.23 KOH 90% son necesarios
Explanation:
Una solución 1N de KOH requiere 1equivalente (En KOH, 1eq = 1mol) por cada litro de solución.
Para responder esta pregunta se requiere hallar los equivalentes = Moles de KOH para preparar 100mL = 0.100L de una solución 1N. Haciendo uso de la masa molar de KOH y del porcentaje de pureza del KOH se pueden calcular los gramos requeridos para preparar la solución así:
<em>Equivalentes KOH:</em>
0.100L * (1eq / L) = 0.100eq = 0.100moles
<em>Gramos KOH -Masa molar: 56.1056g/mol-:</em>
0.100moles * (56.1056g/mol) = 5.61 KOH se requieren
<em>KOH 90%:</em>
5.61g KOH * (100g KOH 90% / 90g KOH) =
<h3>6.23 KOH 90% son necesarios</h3>