1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivenika [448]
4 years ago
14

What is the effect of force on friction?

Physics
1 answer:
Bas_tet [7]4 years ago
3 0
Friction is a force that acts against a moving object to slow it down. A type of friction is air resistance. Friction opposes the direction in which the object is moving, causing the object to decrease in speed, or stop all together.
You might be interested in
A lunar eclipse occurs only when the Moon is new. A lunar eclipse occurs only when the Moon is new. True False
Fittoniya [83]

False. False.

A lunar eclipse occurs only when the moon is full.

A solar eclipse occurs only when the moon is new.

7 0
4 years ago
A ball bearing of radius of 1.5 mm made of iron of density
Serjik [45]

Answer:

\boxed{\sf Viscosity \ of \ glycerine \ (\eta) = 14.382 \ poise}

Given:

Radius of ball bearing (r) = 1.5 mm = 0.15 cm

Density of iron (ρ) = 7.85 g/cm³

Density of glycerine (σ) = 1.25 g/cm³

Terminal velocity (v) = 2.25 cm/s

Acceleration due to gravity (g) = 980.6 cm/s²

To Find:

Viscosity of glycerine (\sf \eta)

Explanation:

\boxed{ \bold{v =  \frac{2}{9}  \frac{( {r}^{2} ( \rho -  \sigma)g)}{ \eta} }}

\sf \implies \eta =  \frac{2}{9}  \frac{( {r}^{2}( \rho -  \sigma)g )}{v}

Substituting values of r, ρ, σ, v & g in the equation:

\sf \implies \eta =  \frac{2}{9}  \frac{( {(0.15)}^{2}  \times  (7.85 - 1.25) \times 980.6)}{2.25}

\sf \implies \eta =  \frac{2}{9}  \frac{(0.0225 \times 6.6 \times 980.6)}{2.25}

\sf \implies \eta =  \frac{2}{9}  \times  \frac{145.6191}{2.25}

\sf \implies \eta =  \frac{2}{9}  \times 64.7196

\sf \implies \eta =  2 \times 7.191

\sf \implies \eta =  14.382 \: poise

6 0
3 years ago
The two speakers at S1 and S2 are adjusted so that the observer at O hears an intensity of 6 W/m² when either S1 or S2 is sounde
Zanzabum

Answer:

The minimum frequency is 702.22 Hz

Explanation:

The two speakers are adjusted as attached in the figure. From the given data we know that

S_1 S_2=3m

S_1 O=4m

By Pythagoras theorem

                                 S_2O=\sqrt{(S_1S_2)^2+(S_1O)^2}\\S_2O=\sqrt{(3)^2+(4)^2}\\S_2O=\sqrt{9+16}\\S_2O=\sqrt{25}\\S_2O=5m

Now

The intensity at O when both speakers are on is given by

I=4I_1 cos^2(\pi \frac{\delta}{\lambda})

Here

  • I is the intensity at O when both speakers are on which is given as 6 W/m^2
  • I1 is the intensity of one speaker on which is 6  W/m^2
  • δ is the Path difference which is given as

                                           \delta=S_2O-S_1O\\\delta=5-4\\\delta=1 m

  • λ is wavelength which is given as

                                             \lambda=\frac{v}{f}

      Here

              v is the speed of sound which is 320 m/s.

              f is the frequency of the sound which is to be calculated.

                                  16=4\times 6 \times cos^2(\pi \frac{1 \times f}{320})\\16/24= cos^2(\pi \frac{1f}{320})\\0.667= cos^2(\pi \frac{f}{320})\\cos(\pi \frac{f}{320})=\pm0.8165\\\pi \frac{f}{320}=\frac{7 \pi}{36}+2k\pi \\ \frac{f}{320}=\frac{7 }{36}+2k \\\\ {f}=320 \times (\frac{7 }{36}+2k )

where k=0,1,2

for minimum frequency f_1, k=1

                                  {f}=320 \times (\frac{7 }{36}+2 \times 1 )\\\\{f}=320 \times (\frac{79 }{36} )\\\\ f=702.22 Hz

So the minimum frequency is 702.22 Hz

5 0
3 years ago
If you are pulling on a box with a force of 20 N, and your friend is pushing the box in the same direction with a force of 30 N,
mihalych1998 [28]

Answer: If you are pushing a box toward your friend with a force of 20 N, and your friend is pushing the box toward you with a force of 30 N, what will happen to the box? The box will move toward your friend with a force of 50 N.

Explanation:

7 0
3 years ago
A uniform disk with a 25 cm radius swings without friction about a nail through the rim. If it is released from rest from a posi
ValentinkaMS [17]

Answer:

Explanation:

During the swing , the center of mass will go down due to which disc will lose potential energy which will be converted into rotational kinetic energy

mgh = 1/2 I ω² where m is mass of the disc , h is height by which c.m goes down which will be equal to radius of disc , I is moment of inertia of disc about the nail at rim , ω is angular velocity .

mgr  = 1/2 x ( 1/2 m r²+ mr²) x ω²

gr  = 1/2 x 1/2  r² x ω² + 1/2r² x ω²

g = 1 / 4 x ω² r + 1 / 2 x ω² r

g = 3  x ω² r/ 4

ω² = 4g /3 r

= 4 x 9.8 /  3 x  .25

= 52.26

ω = 7.23  rad / s .

6 0
3 years ago
Other questions:
  • A supersonic jet flying at 150 m/s is accelerated uniformly at the rate of 22m/s² for 20s.What is its final velocity
    6·1 answer
  • What is the speed of a car that traveled 500 meter in 30 seconds?
    5·1 answer
  • During the French and Indian war France and Great Britain fought for control of north American territory what impacted the end o
    7·1 answer
  • A fisherman notices that his boat is moving up and down periodically without any horizontal motion, owing to waves on the surfac
    7·1 answer
  • Which of the following is a subatomic particle?
    14·1 answer
  • A bowling ball weighing 71.2 N is swinging like a pendulum at the end of a 3.8 m rope.
    11·1 answer
  • Fortnite? need help on this question
    10·2 answers
  • Time running out plzz hurry!!!!!!
    12·2 answers
  • True of false. Red stars are hotter than blue stars.
    12·1 answer
  • One of the possible criteria of Schizophrenia is hallucinations.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!