C. Temperature, chemical composition and mineral structure
Explanation:
The Bowen's reaction series illustrates the relationship between temperature, chemical composition and mineral structure.
The series is made up of a continuous and discontinuous end through which magmatic composition can be understood as temperature changes.
- The left part is the discontinuous end while the right side is the continuous series.
- From the series, we understand that a magmatic body becomes felsic as it begins to cool to lower temperature.
- A magma at high temperature is ultramafic and very rich in ferro-magnesian silicates which are the chief mineral composition of olivine and pyroxene. These minerals are predominantly found in mafic- ultramafic rocks. Also, we expect to find the calcic-plagioclase at high temperatures partitioned in the magma.
- At a relatively low temperature, minerals with frame work structures begins to form . The magma is more enriched with felsic minerals and late stage crystallization occurs here.
Learn more:
Silicate minerals brainly.com/question/4772323
#learnwithBrainly
Answer:
Explanation:
When the positively charged half shell is brought in contact with the electroscope, its needle deflects due to charge present on the shell.
When the negatively charged half shell is brought in contact with the positively charged shell , the positive and negative charge present on each shell neutralises each other .So both the shells lose their charges .The positive half shell also loses all its charges
When we separate the half shells , there will be no deflection in the electroscope because both the shell have already lost their charges and they have become neutral bodies . So they will not be able to produce any deflection in the electroscope.
Answer:
Approximately
(given that the magnitude of this charge is
.)
Explanation:
If a charge of magnitude
is placed in an electric field of magnitude
, the magnitude of the electrostatic force on that charge would be
.
The magnitude of this charge is
. Apply the unit conversion
:
.
An electric field of magnitude
would exert on this charge a force with a magnitude of:
.
Note that the electric charge in this question is negative. Hence, electrostatic force on this charge would be opposite in direction to the the electric field. Since the electric field points due south, the electrostatic force on this charge would point due north.
<span>radiation, hydrogen, and helium </span>