Answer:
mass =25 kg
using clockwise moment = anticlockwise moment
Answer:
Explanation:
the light ray leaving a medium in contrast to the entering or incident ray.
Answer:
Option (e) = The charge can be located anywhere since flux does not depend on the position of the charge as long as it is inside the sphere.
Explanation:
So, we are given the following set of infomation in the question given above;
=> "spherical Gaussian surface of radius R centered at the origin."
=> " A charge Q is placed inside the sphere."
So, the question is that if we are to maximize the magnitude of the flux of the electric field through the Gaussian surface, the charge should be located where?
The CORRECT option (e) that is " The charge can be located anywhere since flux does not depend on the position of the charge as long as it is inside the sphere." Is correct because of the reason given below;
REASON: because the charge is "covered" and the position is unknown, the flux will continue to be constant.
Also, the Equation that defines Gauss' law does not specify the position that the charge needs to be located, therefore it can be anywhere.
Answer:
screw and pulley
Explanation:
because they didn't have any of the other tools in that time
Based on the given, this is probably a gravitational potential energy problem (PEgrav). The formula for PEgrav is:
PEgrav = mgh
Where:
m = mass (kg)
g = acceleration due to gravity
h = height (m)
With this formula you can derive the formula for your unknown, which is mass. First put in what you know and then solve for what you do not know.

![30J=m(10)(10[tex] \frac{30}{100} =m](https://tex.z-dn.net/?f=30J%3Dm%2810%29%2810%5Btex%5D%20%5Cfrac%7B30%7D%7B100%7D%20%3Dm)
)[/tex]
Do operations that you can with what is given first.

Transpose the 100 to the other side of the equation. Do not forget that when you transpose, you do the opposite operation.
m = 0.30kg