Answer:
Meters
Explanation:"How FAR did the athlete run?"
Also it talked about meters
Answer:

Explanation:
The difference of electric potential between two points is given by the formula
, where <em>d</em> is the distance between them and<em> E</em> the electric field in that region, assuming it's constant.
The electric field formula is
, where <em>F </em>is the force experimented by a charge <em>q </em>placed in it.
Putting this together we have
, so we need to obtain the electric force the charged ball is experimenting.
On the second drop, the ball takes more time to reach the ground, this means that the electric force is opposite to its weight <em>W</em>, giving a net force
. On the first drop only <em>W</em> acts, while on the second drop is <em>N</em> that acts.
Using the equation for accelerated motion (departing from rest)
, so we can get the accelerations for each drop (1 and 2) and relate them to the forces by writting:


These relate with the forces by Newton's 2nd Law:


Putting all together:

Which means:

And finally we substitute:

Which for our values means:

Answer:
v = 120 m/s
Explanation:
We are given;
earth's radius; r = 6.37 × 10^(6) m
Angular speed; ω = 2π/(24 × 3600) = 7.27 × 10^(-5) rad/s
Now, we want to find the speed of a point on the earth's surface located at 3/4 of the length of the arc between the equator and the pole, measured from equator.
The angle will be;
θ = ¾ × 90
θ = 67.5
¾ is multiplied by 90° because the angular distance from the pole is 90 degrees.
The speed of a point on the earth's surface located at 3/4 of the length of the arc between the equator and the pole, measured from equator will be:
v = r(cos θ) × ω
v = 6.37 × 10^(6) × cos 67.5 × 7.27 × 10^(-5)
v = 117.22 m/s
Approximation to 2 sig. figures gives;
v = 120 m/s