Answer:
172 g Al
Step-by-step explanation:
We know we will need a balanced equation with masses and molar masses, so let’s <em>gather all the information</em> in one place.
M_r: 26.98 101.96
4Al + 3O₂ ⟶ 2Al₂O₃
m/g: 325
(a) Calculate the <em>moles of Al₂O₃
</em>
n = 325 g Al₂O₃ × 1 mol Al₂O₃ /39.10 g Al₂O₃
n = 3.188 mol Al₂O₃
(b) Calculate the <em>moles of Al
</em>
The molar ratio is (4 mol Al/2 mol Al₂O₃)
n = 3.188 mol Al₂O₃ × (4 mol Al/2 mol Al₂O₃)
n = 6.375 mol Al
(c) Calculate the <em>mass of Al</em>
m = 6.375 mol Al × (26.98 g Al/1 mol Al)
m = 172 g Al
Note: The answer can have only <em>three</em> significant figures because that is all you gave for the mass of Al₂O₃.
One of the most likely products for the reaction would be 
<h3>Chemical reactions</h3>
The reaction between
and
yields 3 products which are
(a precipitate),
, and
as shown by the equation below:

One of the products precipitates out of the solution to give the reaction a precipitation reaction look.
More on precipitation reaction can be found here: brainly.com/question/24158764
#SPJ4
If the bonds are held together tightly, as an ionic bond or even a covalent bond, there will need to be a strong force to separate those bonds. This would by why their would be a high melting point. Another reason would be re-activity. <span />
Explanation:
Let the mass of isoamyl acetate be 100g.
Moles of Carbon = 60.58/12 = 5.048mol
Moles of Hydrogen = 7.07/1 = 7.07mol
Moles of Oxygen = 32.28/16 = 2.018mol
Mole Ratio of C : H : O
= 5.048 : 7.07 : 2.018
= 5 : 7 : 2.
Hence the empirical formula of isoamyl acetate is C5H7O2.
Is there an equation? I can't help if there's no equation involved.