The dilution formula can be used to find the volume needed
c1v1 = c2v2
Where c1 is concentration and v1 is volume of the concentrated solution
And c2 is concentration and v2 is volume of the diluted solution to be prepared
c1 - 0.33 M
c2 - 0.025 M
v2 - 25 mL
Substituting these values in the equation
0.33 M x v1 = 0.025 M x 25 mL
v1 = 1.89 mL
Therefore 1.89 mL of the 0.33 M solution needs to be diluted up to 25 mL to make a 0.025 M solution
132 g of C , 22 g of H , 176 g of O
132 + 22 + 176 => 330 g <span>of the substance
</span>Now convert the masses in <span>moles :
</span>
C = 12.0 u H = 1.0 u O = 16.0 u
C = 132 / 12.0 => 11 moles
H = 22 / 1.0 => 22 moles
O = 176 / 16.0 => 11 moles
Using the values obtained the lowest proportion in mols of elements present, simply divide the values found for the least of them<span>:
</span>
C = 11 / 11 => 1
H = 22 / 11 => 2
O = 11 / 11 => 1
formula empirically <span>is : CH</span>₂O
hope this helps!
Answer:
Cooffee
Explanation:
<em>the answer is coffee because coffee might be bitter</em>
Answer: 1s^22s^22p^63s^23p^3
Explanation:
Assuming that orbital configuration is the same as electron configuration this is the answer.
Answer:
Wavelength = 0.06024 m
Explanation:
Equation of energy of wavelength from Einstein's relativity equation is;
E = hc/λ
Where;
h is Planck's constant = 6.626 × 10⁻³⁴ J. s
c is speed of light = 3 × 10⁸
We are given E = 3.3 × 10^(-24) J
Making wavelength λ the subject, we have;
λ = hc/E
Thus;
(6.626 × 10⁻³⁴ × 3 × 10⁸)/(3.3 × 10^(-24)) = 6.024 × 10^(-2) = 0.06024 m
Wavelength = 0.06024 m