Answer:
In fluid dynamics, an object is moving at its terminal velocity if its speed is constant due to the restraining force exerted by the fluid through which it is moving. ... At this point the object ceases to accelerate and continues falling at a constant speed called the terminal velocity (also called settling velocity).
You can just use basic
trigonometry to solve for the x & y components.
<span>vector a = 10cos(30) i +
10sin(30) j = <5sqrt(3), 5></span>
vector b is only slightly harder because the angle is relative
to vector a, and not the positive x-axis. Anyway, this just makes vector b with
an angle of 135deg to the positive x-axis.
<span>vector b = 10cos(135) i +
10sin(135) j = <-5sqrt(2), 5sqrt(2)></span>
So
now we can do the questions:
r = a + b
r = <5sqrt(3)-5sqrt(2), 5+5sqrt(2)>
(a)
5sqrt(3)-5sqrt(2)
(b)
5+5sqrt(2)
(c)
|r|
= sqrt( (5sqrt(3)-5sqrt(2))2 + (5+5sqrt(2))2 )
=
12.175
(d)
θ = tan-1 (
(5+5sqrt(2)) / (5sqrt(3)-5sqrt(2)) )
θ
= 82.5deg
<span> </span>
I believe is A) Inner core
Answer:
??? i don't no what you just said
Explanation: