The parallel component is given by
F=180cos(25)=163.14N
Answer:
Volume strain is 0.02
Explanation:
Volume strain is defined as the change in volume to the original volume.
It is given that,
Initial volume of the plastic box is 2 m³
It is then submerged below the surface of a liquid and its volume decreases to 1.96 m³
We need to find the volume strain on the box. It is defined as the change in volume divided by the original volume. So,

So, the volume strain on the box is 0.02.
Answer:
The shortest distance in which you can stop the automobile by locking the brakes is 53.64 m
Explanation:
Given;
coefficient of kinetic friction, μ = 0.84
speed of the automobile, u = 29.0 m/s
To determine the the shortest distance in which you can stop an automobile by locking the brakes, we apply the following equation;
v² = u² + 2ax
where;
v is the final velocity
u is the initial velocity
a is the acceleration
x is the shortest distance
First we determine a;
From Newton's second law of motion
∑F = ma
F is the kinetic friction that opposes the motion of the car
-Fk = ma
but, -Fk = -μN
-μN = ma
-μmg = ma
-μg = a
- 0.8 x 9.8 = a
-7.84 m/s² = a
Now, substitute in the value of a in the equation above
v² = u² + 2ax
when the automobile stops, the final velocity, v = 0
0 = 29² + 2(-7.84)x
0 = 841 - 15.68x
15.68x = 841
x = 841 / 15.68
x = 53.64 m
Thus, the shortest distance in which you can stop the automobile by locking the brakes is 53.64 m
False
It is impossible to get infinite energy let alone to put it inside one battery