Gee. I'll have to guess at what's "commonly thought".
One thing is the scale. Nobody has an accurate picture of the scale in
his head, because we never see a true-scale drawing. THAT's because
it's almost impossible to draw one on paper.
Example:
Shrink the solar system and everything in it so that the Sun
is the size of a quarter (the 25¢ coin).
Then:
-- The Earth is in orbit around the sun, 8.6 feet from it.
That's close enough that you might think you could find the
shrunken Earth. Unfortunately, it's only 0.009 inch in diameter.
-- The shrunken Jupiter is a 'huge' gas giant almost 0.1 inch in diameter.
It's orbiting the sun, about 45 feet away from it.
-- The shrunken Uranus is another gas giant, about 0.035 inch in diameter.
It's orbiting the sun, about 165 feet away from it.
-- The nearest star outside of the solar system is 441 MILES away !
On the same shrunken scale !
And there's NOTHING between here and there !
I think that's the biggest point to make about the REAL solar system ...
its utter emptiness. With the sun reduced to something you can hold
in your hand, the planets are the size of grains of sand, with hundreds
of feet of nothingness between them.
Same for its mass: The solar system is approximately nothing but a star.
That's it. A star, with some dust and some gas around it, and here and there
in the neighborhood a microscopic pebble or a chip of mineral. But mostly
it's nothing but a star ... if you went around and gathered up all that other
rubbish in the same bag and called it a part of the same solar system, the
sun would still have more than 99% of the total mass, and the bag would
hold less than 1% of it.
Book ... It's getting late, Hillary's fading, and that's all I can think of.
I hope this much is some help.
Answer:
A jump occurs when a core electron is removed.
Explanation:
A jump in ionization energy occurs when a core electron is removed. A large jump in the ionization energy easily be seen from the electronic configuration of an element.
For Beryllium, the electronic configuration of is 1s2 2s2.
There are two valence electrons in the outermost shell hence the ionization energy data for beryllium will show a sudden jump or increase in going from the second to the third ionization energy owing to the removal of a core electron
The electronic configuration for Nitrogen is 1s2 2s2 2p3. Five valence electrons are found in the outermost shell so the ionization energy data for nitrogen will show a sudden jump or increase in going from the fifth to sixth ionization energy because of the removal of a core electron
The electronic configuration of oxygen is 1s2 2s2 2p4. There are six valence electrons hence ionization energy for oxygen atom will show a sudden jump or increase in going from the sixth to the seventh ionization energy because of the removal of a core electron
The electronic configuration of Lithium is 1s2 2s1
There is one valence electron in its outermost shell so its ionization energy data will show a sudden jump or increase in going from the first to the second ionization energy because of the removal of a core electron.
<u>Answer:</u> 4.999 moles of excess reactant will be left over.
<u>Explanation:</u>
Limiting reagent is defined as the reagent which is completely consumed in the reaction and limits the formation of the product.
Excess reagent is defined as the reagent which is left behind after the completion of the reaction.
The number of moles is defined as the ratio of the mass of a substance to its molar mass.
.....(1)
Given mass of aluminium carbide = 112 g
Molar mass of aluminium carbide = 143.96 g/mol
Putting values in equation 1:

For the given chemical reaction:

By the stoichiometry of the reaction:
2 moles of aluminium carbide reacts with 12 moles of water
So, 0.778 moles of aluminium carbide will react with =
of water
Given mass of water = 174 g
Molar mass of water = 18 g/mol
Putting values in equation 1:

Moles of excess reactant (water) left = 9.667 - 4.668 = 4.999 moles
Hence, 4.999 moles of excess reactant will be left over.