A force is a push or pull acting upon an object as a result of its interaction with another object. There are a variety of types of forces. a variety of force types were placed into two broad category headings on the basis of whether the force resulted from the contact or non-contact of the two interacting objects.
Contact Forces
Action-at-a-Distance Forces
Frictional Force
Gravitational Force
Tensional Force
Electrical Force
Normal Force
Magnetic Force
Air Resistance Force
Applied Force
Spring Force
These are types of individual forces
Applied Force
Gravitational Force
Normal Force
Frictional Force
Air Resistance Force
Tensional Force
Spring Force
Answer:
5.95 A
Explanation:
From the question
R = ρL/A..................... Equation 1
Where R = resistance of the tungsten wire, ρ = Resistivity of the tungsten wire, L = length, A = cross sectional area.
Given: L = 1.5 m, A = 0.8 mm² = 0.8×10⁻⁶ m, ρ = 5.60×10⁻⁸ Ω.m
Substitute these values into equation 1
R = 1.5(5.60×10⁻⁸)/0.8×10⁻⁶
R = 0.084 Ω.
Finally, using Ohm law,
V = IR
Where V = Voltage, I = current
Make I the subject of the equation
I = V/R............... Equation 2
I = 0.5/0.084
I = 5.95 A
Primary Waves
Secondary go only through air, but not water.
1.false
2.true
3.true
4.true
5.false/not entirely sure
6.true
By definition we have the momentum is:
P = m * v
Where,
m = mass
v = speed
Before the impact:
P1 = (0.048) * (26) = 1.248 kg * m / s
After the impact:
P2 = (0.048) * (- 17) = -0.816 Kg * m / s.
Then we have that deltaP is:
deltaP = P2-P1
deltaP = (- 0.816) - (1,248)
deltaP = -2,064 kg * m / s.
Then, by definition:
deltaP = F * delta t
Clearing F:
F = (deltaP) / (delta t)
Substituting the values
F = (- 2.064) / (1/800) = - 1651.2N
answer:
the magnitude of the average force exerted on the superball by the sidewalk is 1651.2N