Option B
Neptune, Uranus, Saturn, Jupiter, Mars, Earth, Venus, Mercury correctly describes the usual order of planets inward toward the sun
<u>Explanation:</u>
Our solar system continues much considerably than the eight planets that revolve around the Sun. The position of the planets in the solar system, commencing inward to the sun is the accompanying: Neptune, Uranus, Saturn, Jupiter, Mars, Earth, Venus, Mercury.
Most next to the Sun, simply rocky material could resist the heat. For this logic, the first four planets: Mercury, Venus, Earth, and Mars are terrestrial planets. The four large outer worlds — Jupiter, Saturn, Uranus, and Neptune: because of their enormous size corresponding to the terrestrial planets. They're also frequently composed of gases like hydrogen, helium, and ammonia preferably than of rocky surfaces.
The shot putter should get out of the way before the ball returns to the launch position.
Assume that the launch height is the reference height of zero.
u = 11.0 m/s, upward launch velocity.
g = 9.8 m/s², acceleration due to gravity.
The time when the ball is at the reference position (of zero) is given by
ut - (1/2)gt² = 0
11t - 0.5*9.8t² = 0
t(11 - 4.9t) = 0
t = 0 or t = 4.9/11 = 0.45 s
t = 0 corresponds to when the ball is launched.
t = 0.45 corresponds to when the ball returns to the launch position.
Answer: 0.45 s
Answer:
Distance between centre of Earth and centre of Moon is 3.85 x 10⁸ m
Explanation:
The attractive force experienced by two mass objects is known as Gravitational force.
The gravitational force is determine by the relation:
....(1)
According to the problem,
Mass of Moon, m₁ = 7.35 x 10²² kg
Mass of Earth, m₂ = 5.97 x 10²⁴ kg
Gravitational force experienced by them, F = 1.98 x 10²⁰ N
Universal gravitational constant, G = 6.67 x 10⁻¹¹ Nm²kg⁻²
Substitute these values in equation (1).



d = 3.85 x 10⁸ m
1) 0N... friction opposes the motion of an object, since the block is at rest there is no motion thus no friction
2) F=ma
= (5.5kg)(30m/s)
=165 N