Answer:
j
Explanation:
x = 4 t^2 - 2 t - 4.5
Position at t = 3 s
x = 4 (3)^2 - 2 (3) - 4.5 = 25.5 m
Velocity at t = 3 s
v = dx / dt = 8 t - 2
v ( t = 3 s) = 8 x 3 - 2 = 22 m/s
Acceleration at t = 3 s
a = dv / dt = 8
a ( t = 3 s ) = 8 m/s^2
When is the velocity = 0
v = 0
8 t - 2 = 0
t = 0.25 second
When is the position = 0
x = 0
4 t^2 - 2 t - 4.5 = 0

t = 1.4 second
Answer:
24 cm
Explanation:
Given:
Mass of proton = 1.67 × 10⁻²⁷ Kg
kinetic energy = 2.5 × 10⁻¹³ J
magnetic field in the cyclotron, B = 0.75 T
Now,
Kinetic energy =
= 2.5 × 10⁻¹³ J
where, v is the velocity of the electron
or
= 2.5 × 10⁻¹³ J
or
v² = 2.99 × 10¹⁴
or
v = 1.73 × 10⁷ m/s
also,
centripetal force = magnetic force
or
= qvB
q is the charge of the electron
r is the radius of the dipole magnets
on substituting the respective values, we get
= 1.6 × 10⁻¹⁹ × 0.75
or
r = 0.2408 m ≈ 24 cm
Hence, the correct answer is 24 cm
Answer:
No
Explanation:
Some objects gain momentum.
<span>potential energy! Because the rock has the ability to possible move! So :)</span>
Answer:
the longest wavelength of incident sunlight that can eject an electron from the platinum is 233 nm
Explanation:
Given data
Φ = 5.32 eV
to find out
the longest wavelength
solution
we know that
hf = k(maximum) +Ф ...............1
here we consider k(maximum ) will be zero because photon wavelength max when low photon energy
so hf = 0
and hc/ λ = +Ф
so λ = hc/Ф ................2
now put value hc = 1240 ev nm and Φ = 5.32 eV
so hc = 1240 / 5.32
hc = 233 nm
the longest wavelength of incident sunlight that can eject an electron from the platinum is 233 nm