How many grams Nitrogen in 1 mol? The answer is 14.0067. We assume you are converting between grams Nitrogen and mole. You can view more details on each measurement unit: molecular weight of Nitrogen or mol The molecular formula for Nitrogen is N. The SI base unit for amount of substance is the mole. 1 grams Nitrogen is equal to 0.071394404106606 mole. Note that rounding errors may occur, so always check the results. Use this page to learn how to convert between grams Nitrogen and mole. Type in your own numbers in the form to convert the units!
Answer:
1. Rutherford did the scattering experiment and observed that some of the rays bounce back. He concluded that there is a mass in which positive charge is concentrated. This marks the discovery of nucleus.
2. J.J Thomson discovered electrons by conducting cathode ray experiment.
3. Dalton postulated that matter is made up of small particles caled atoms
Answer:All materials are made up from atoms, and all atoms consist of protons, neutrons and electrons. Protons, have a positive electrical charge. Neutrons have no electrical charge (that is they are Neutral), while Electrons have a negative electrical charge. Atoms are bound together by powerful forces of attraction existing between the atoms nucleus and the electrons in its outer shell.
All materials are made up from atoms, and all atoms consist of protons, neutrons and electrons. Protons, have a positive electrical charge. Neutrons have no electrical charge (that is they are Neutral), while Electrons have a negative electrical charge. Atoms are bound together by powerful forces of attraction existing between the atoms nucleus and the electrons in its outer shell.
Electrical Voltage
Voltage, ( V ) is the potential energy of an electrical supply stored in the form of an electrical charge. Voltage can be thought of as the force that pushes electrons through a conductor and the greater the voltage the greater is its ability to “push” the electrons through a given circuit. As energy has the ability to do work this potential energy can be described as the work required in joules to move electrons in the form of an electrical current around a circuit from one point or node to another.
Then the difference in voltage between any two points, connections or junctions (called nodes) in a circuit is known as the Potential Difference, ( p.d. ) commonly called the Voltage Drop.
he Potential difference between two points is measured in Volts with the circuit symbol V, or lowercase “v“, although Energy, E lowercase “e” is sometimes used to indicate a generated emf (electromotive force). Then the greater the voltage, the greater is the pressure (or pushing force) and the greater is the capacity to do work.
A constant voltage source is called a DC Voltage with a voltage that varies periodically with time is called an AC voltage. Voltage is measured in volts, with one volt being defined as the electrical pressure required to force an electrical current of one ampere through a resistance of one Ohm. Voltages are generally expressed in Volts with prefixes used to denote sub-multiples of the voltage such as microvolts ( μV = 10-6 V ), millivolts ( mV = 10-3 V ) or kilovolts ( kV = 103 V ). Voltage can be either positive or negative.
An apple should be cut into 4 equal pieces, then put each slice in a separate container and label accordingly with letters A, B, C, and Control. Put water, ginger ale, and lemon juice into containers A, B, and C respectively but leave the Control untouched. Observe which of the slices in containers A, B, C will stay the same color after the one in control turns brown, if the slice maintains its color then the liquid added prevents an apple slice from browning. The variables are the liquids added and the control is the slice that did not have anything added to it.