You would calculate them by dividing them and then multiplying to get the final answer
Answer:
Explanation:
1. Density from mass and volume

2. Volume from density and mass

3. Mass from density and volume

4. Density by displacement
Volume of water + object = 24.6 mL
Volume of water =<u> 12.8 mL</u>
Volume of object = 11.8 mL

Your drawing showing water displacement using a graduated cylinder should resemble the figure below.
The standard entropy for the substances are as follows:
C6H12O2(s) = -212
<span>O2(g) = -205 </span>
<span>CO2(g) = -214 </span>
<span>H2O(l) = -70
</span>
We calculate the ∆S°r<span>eaction by the expression:
</span>∆S°rxn = ∆S°products - ∆S° reactants
∆S°rxn = (212+6x205)-(6x214+6x70)
∆S°rxn = -262 J/K ------> OPTION 3