Answer:
a) After the balloon inflated after 440 uL of dropwise due to the reaction of 1-Decene and the solution in the conical vial. b)
⇒ 16
c) No
was not the limiting reactant.
Explanation:
Generally, hydrogenation is the chemical reaction between a compound or element and molecular hydrogen in the presence of catalysts such as platinum.
a) After the balloon inflated after 440 uL of dropwise 1-Decene solution was added due to the reaction between 1-Decene and the solution in the conical vial.
b)
⇒ 16
c)
was not the limiting reactant based on the mol to mol ratio of
and decane which is 1:1. Therefore, if 0.8 mol of decane was produced then 0.8 mol of
would also be produced.
Answer:
8.37 grams
Explanation:
The balanced chemical equation is:
C₆H₁₂O₆ ⇒ 2 C₂H₅OH (l) + 2 CO₂ (g)
Now we are asked to calculate the mass of glucose required to produce 2.25 L CO₂ at 1atm and 295 K.
From the ideal gas law we can determine the number of moles that the 2.25 L represent.
From there we will use the stoichiometry of the reaction to determine the moles of glucose which knowing the molar mass can be converted to mass.
PV = nRT ⇒ n = PV/RT
n= 1 atm x 2.25 L / ( 0.08205 Latm/kmol x 295 K ) =0.093 mol CO₂
Moles glucose required:
0.093 mol CO₂ x ( 1 mol C₆H₁₂O₆ / 2 mol CO₂ ) = 0.046 mol C₆H₁₂O₆
The molar mass of glucose is 180.16 g/mol, then the mass required is
0.046 mol x 180.16 g/mol = 8.37 g
Answer:
it goes to a solid to a liquid
Explanation:
When something is a solid the molecules are impact together and have a small sense of vibration. But as the solid melts away for example ice, the molecules become more loose forming into a liquid
Answer:
K = 0.5
Explanation:
Based on the reaction:
PCl₃ + Cl₂ ⇄ PCl₅
The equilibrium constant, K, is defined as:
K = P PCl₅ / P PCl₃ * P Cl₂
<em>Where P represent the pressure at the equilibrium for each one of the gases involved in the equilibrium.</em>
<em />
As:
P PCl₅ = 1.0atm
P PCl₃ = 1.0atm
P Cl₂ = 2.0atm
K = 1.0atm / 1.0atm * 2.0atm
<h3>K = 0.5</h3>