1.386 g of Mg ribbon combusts to form 2.309 g of oxide product. The mass percent of oxygen in the oxide is 40.0 %.
Let's consider the reaction for the combustion of Mg.
Mg + 1/2 O₂ ⇒ MgO
1.386 g of Mg combusts to form 2.309 g of MgO. We want to determine the mass of oxygen in MgO. According to Lavoisier's law of conservation of mass, matter is not created nor destroyed over the course of a chemical reaction. Then, the mass of Mg in the reactants is equal to the mass of Mg in MgO. The mass of the magnesium oxide is the sum of the masses of magnesium and oxygen. The <u>mass of oxygen in the oxide</u> is:

We can calculate the mass percent of O in MgO using the following expression.

You can learn more about mass percent here: brainly.com/question/14990953
Answer:
Buffer 1.
Explanation:
Ammonia is a weak base. It acts like a Bronsted-Lowry Base when it reacts with hydrogen ions.
.
gains one hydrogen ion to produce the ammonium ion
. In other words,
is the conjugate acid of the weak base
.
Both buffer 1 and 2 include
- the weak base ammonia
, and - the conjugate acid of the weak base
.
The ammonia
in the solution will react with hydrogen ions as they are added to the solution:
.
There are more
in the buffer 1 than in buffer 2. It will take more strong acid to react with the majority of
in the solution. Conversely, the pH of buffer 1 will be more steady than that in buffer 2 when the same amount of acid has been added.
Drill cores from the ocean floor were dated and found to be very young compared to the age of the earth. This means the crust had to be formed recently, which can be explained by creation of crust at a spreading center.