Answer:
A = B < D < C
C - S
Cl - Cl
F ← H
Si → O
Explanation:
The polarity of a bond increases with the increase in the difference in electronegativity. The dipole moment is represented with an arrow pointing the more electronegative atom.
A: carbon-sulfur
C - S
ΔEN = |EN(C) - EN(S)| = |2.5 - 2.5| = 0
B: chlorine - chlorine
Cl - Cl
ΔEN = |EN(Cl) - EN(Cl)| = |3.0 - 3.0| = 0
C: fluorine – hydrogen
F ← H
ΔEN = |EN(F) - EN(H)| = |4.0 - 2.1| = 1.9
D: silicon - oxygen
Si → O
ΔEN = |EN(Si) - EN(O)| = |1.8 - 3.5| = 1.7
The order of increasing polarity is A = B < D < C.
Answer:
22.44°C will be the final temperature of the water.
Explanation:
Heat lost by tin will be equal to heat gained by the water

Mass of tin = 
Specific heat capacity of tin = 
Initial temperature of the tin = 
Final temperature =
=T

Mass of water= 
Specific heat capacity of water= 
Initial temperature of the water = 
Final temperature of water =
=T



On substituting all values:

we get, T = 22.44°C
22.44°C will be the final temperature of the water.
Answer:
2.1 × 10⁻¹ M
2.0 × 10⁻¹ m
Explanation:
Molarity
The molar mass of aniline (solute) is 93.13 g/mol. The moles corresponding to 3.9 g are:
3.9 g × (1 mol/93.13 g) = 0.042 mol
The volume of the solution is 200 mL (0.200 L). The molarity of aniline is:
M = 0.042 mol/0.200 L = 0.21 M = 2.1 × 10⁻¹ M
Molality
The moles of solute are 0.042 mol.
The density of the solvent is 1.05 g/mL. The mass corresponding to 200 mL is:
200 mL × 1.05 g/mL = 210 g = 0.210 kg
The molality of aniline is:
m = 0.042 mol/0.210 kg = 0.20 m = 2.0 × 10⁻¹ m
Mass of ammonia produced : 121.38 g
<h3>Further explanation</h3>
Given
Reaction
3H₂(g) + N₂(g) ⇒ 2NH₃(g)
100g of N₂
Required
Ammonia produced
Solution
mol of N₂ :

From the equation, mol ratio of N₂ and NH₃ = 1 : 2, so mol NH₃ :

mass of NH₃(MW=17 g/mol) :

Answer: In metallic bonds, the mobile electrons surrounding the positive ions are called <u><em>dipole</em></u>.