Answer:
The distance traveled during its acceleration, d = 214.38 m
Explanation:
Given,
The object's acceleration, a = -6.8 m/s²
The initial speed of the object, u = 54 m/s
The final speed of the object, v = 0
The acceleration of the object is given by the formula,
a = (v - u) / t m/s²
∴ t = (v - u) / a
= (0 - 54) / (-6.8)
= 7.94 s
The average velocity of the object,
V = (54 + 0)/2
= 27 m/s
The displacement of the object,
d = V x t meter
= 27 x 7.94
= 214.38 m
Hence, the distance the object traveled during that acceleration is, a = 214.38 m
Both are constants used in the definition of Forces (gravitational and electric,respectively)
Since those constants are proportional to the magnitude of the forces:
Having a small gravitational constant explains why there is no apparent force of attraction with objects of considerable low mass (they would need to have great value of mass for the equation to give an apreciable force)
Electrical interactions are usually strong, and thus require an appropiate constant to depict the phenomenon. We deal in this case with charges really small, but the forces are in different order of magnitude.
The object is in free fall when and only when it is being affected by gravity alone. It is not being influenced by a significant amount of air resistance will always be in free fall. F(net)/m = acceleration
Answer:
Explanation:
The vertical component of the acceleration of a sailplane is zero , that means the sailplane is experiencing net force of zero in vertical direction . Its weight is acting in downward direction . So airplane is also experiencing an upward force equal to its weight which is making net force equal to zero on it . This force is given as 5.20 k N .
So sailplane is experiencing an upward force equal to its weight . This force is generated due to air pushing up against its wings .
We know that every force generated has equal and opposite reaction force . Air is generating force on wings of sailplane , hence wings will also exert equal force on air on downward direction . This force will be transmitted to the earth by air .
Hence the gravitational force on Earth due to the sailplane will be equal to weight of sailplane . This force is 5.2 kN .