Answer:
606 atoms
Explanation:
Add the numbers 145 + 293 + 168
Answer: K only has 1 valence electron. It will leave with only a little effort, leaving behind a positively charged K^+1 atom.
Explanation: A neutral potassium atom has 19 total electrons. But only 1 of them is in potassium's valence shell. Valence shell means the outermost s and p orbitals. Potasium's electron configuration is 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1. The 4s orbital is the only orbital in the 4th energy level. So it has a valency of 1. This means this electron will be the most likely to leave, since it is the lone electron in the oyutermost energy level (4). When that electron leaves, the charge on the atom go up by 1. The atom now has a full valence shell of 3s^2 3p^6, the same as argon, Ar.
Answer:
0.38
Explanation:
Molar mass of thiophene= 84g/mol
Mass of thiophene = 37g
Number of moles= 37/84= 0.44 moles
Molar mass of heptane= 100 g/mol
Mass of heptane = 72g
Number of moles = 72/100= 0.72 moles
Total number of moles= 0.44 + 0.72= 1.16 moles
mole fraction of thiophene = 0.44/1.16= 0.38
Answer:HNO3 + NaOH → H2O + NaNO3
Explanation:
Answer:
HCO₂
Explanation:
From the information given:
The mass of the elements are:
Carbon C = 26.7 g; Hydrogen H = 2.24 g Oxygen O = 71.1 g
To determine the empirical formula;
First thing is to find the numbers of moles of each atom.
For Carbon:

For Hydrogen:

For Oxygen:

Now; we use the smallest no of moles to divide the respective moles from above.
For carbon:

For Hydrogen:

For Oxygen:

Thus, the empirical formula is HCO₂