Answer:
We report an unusual case of mercury vapor poisoning from using a heated tobacco product. The suspect had added grains of mercury into 20 cigarettes in a pack. When a 36-year-old Japanese man inserted one of these cigarettes into the battery powered holder, it was heated to a temperature of 350 °C, and he inhaled vaporized mercury. After using 14 of the cigarettes over 16 h, he noticed he had flu-like symptoms so he visited the hospital. Although no physical abnormalities were revealed, 99 μg/L of mercury was detected in his serum sample. His general condition improved gradually and his whole blood mercury level had decreased to 38 μg/L 5 days later. When the remaining six cigarettes in the pack were examined, many metallic grains weighing a total of 1.57 g were observed. Energy dispersive X-ray fluorescence spectrometry confirmed the grains as elemental mercury. Accordingly, the victim was diagnosed with mercury poisoning. Because the mercury was incorporated into cigarettes, an unusual and novel intoxication occurred through the heating of the tobacco product. Both medical and forensic scientific examination confirmed this event as attempted murder.
Explanation:
Answer:
The 200 grams of carbohydrate would this convert to 800 kcals in a day.
Explanation:
Carbohydrates are the source of energy. The metabolism of 1 gram of carbohydrates gives 4 kcals of energy.
If 200 grams of carbohydrate is consumed in a day, then the energy provided by it is:-

<u>The 200 grams of carbohydrate would this convert to 800 kcals in a day.</u>
<h3>
Answer:</h3>
0.387 J/g°C
<h3>
Explanation:</h3>
- To calculate the amount of heat absorbed or released by a substance we need to know its mass, change in temperature and its specific heat capacity.
- Then to get quantity of heat absorbed or lost we multiply mass by specific heat capacity and change in temperature.
- That is, Q = mcΔT
in our question we are given;
Mass of copper, m as 95.4 g
Initial temperature = 25 °C
Final temperature = 48 °C
Thus, change in temperature, ΔT = 23°C
Quantity of heat absorbed, Q as 849 J
We are required to calculate the specific heat capacity of copper
Rearranging the formula we get
c = Q ÷ mΔT
Therefore,
Specific heat capacity, c = 849 J ÷ (95.4 g × 23°C)
= 0.3869 J/g°C
= 0.387 J/g°C
Therefore, the specific heat capacity of copper is 0.387 J/g°C
4, because there are 4 quarts in 1 gallon.
Another way to think about it is 1 gallon= $1 and 1 quart= 25 cents
There are 4 quarters in a dollar.
Hope this helped..
Answer:
See the answer below
Explanation:
Even though plants are rooted in the ground, they still move, exert <u>force,</u> and do<u> work</u>.
Plant cells have very strong cell walls that allow <u>pressure</u> to build up inside of the cell as water is absorbed. This pressure is called <u>turgor</u>.
When turgor pressure is high enough in a cell, the cell walls become <u>firm</u> and as a result, the cell becomes rigid and the plant is able to stand <u>tall</u> and<u> straight</u>.
When a plant does not get enough water, the turgor pressure inside of the cells <u>decreases.</u> A decrease in <u>pressure</u> pushing against the cell wall causes the cells to lose their <u>shape</u> and <u>shrink</u>. This causes the plant to begin to droop or <u>wilt</u>.
When the wilted plant gets enough water, the cells will become rigid again, and the plant will stand firm and straight once again.