Answer: 161.3
I have a acellus too and got this question correct, so I hope this helps y’all out
Answer:
Explanation:
Given
mass of wheel m=13 kg
radius of wheel=1.8 m
N=469 rev/min

t=16 s
Angular deceleration in 16 s


Moment of Inertia 
Change in kinetic energy =Work done
Change in kinetic Energy

(a)Work done =50.79 kJ
(b)Average Power

Answer:
Plane will 741.6959 m apart after 1.7 hour
Explanation:
We have given time = 1.7 hr
So if we draw the vectors of a 2d graph we see that the difference in angles is = 
Speed of first plane = 730 m/h
So distance traveled by first plane = 730×1.7 = 1241 m
Speed of second plane = 590 m/hr
So distance traveled by second plane = 590×1.7 = 1003 m
We represent these distances as two sides of the triangle, and the distance between the planes as the side opposing the angle 58.6.
Using the law of cosine,
representing the distance between the planes, we see that:

r = 741.6959 m
To solve this problem we will apply the concepts related to the electric field such as the smelting of the Force and the load (In this case the force is equivalent to the weight). Later we will apply the ratio of the total charge as a function of the multiplication of the number of electrons and their individual charge.

Here,
m = mass
g = Acceleration due to gravity
Rearranging to find the charge,

Replacing,


Since the field is acting upwards the charge on the drop should be negative to balance it in air. The equation to find the number of electrons then is

Here,
n = Number of electrons
e = Charge of each electron

Replacing,


Therefore the number of electrons that reside on the drop is 
Answer:
The speed of light is that medium is 281907786.2 m/s.
Explanation:
since the critical angle is Фc = 430, we know that the refractive index is given by:
n = 1/sin(Фc)
= 1/sin(430)
= 1.06
then if n is the refractive index of the medium and c is the speed of light, then the speed of light in the medium is given by:
v = c/n
= (3×10^8)/(1.06)
= 281907786.2 m/s
Therefore, the speed of light is that medium is 281907786.2 m/s.