Answer:
star
Explanation:
because that is what our sun is.
Answer:
Angle of first order maximum, 
Explanation:
Given that,
Wavelength of the light, 
Number of lines, N = 8000 per cm
The relation between the number of lines and the slit width is given by :


The equation of grating is given by :

n = 1



So, the angle of the first-order maximum is 21.19 degrees. Hence, this is the required solution.
There is no right or wrong answer, your teacher wants you to support your own answer with points. As long as the reasons make logical sense you are fine.
I think they both have valid points. Their replies are both true, but from a buyer's perspective who would you purchase services from? You would get different answers depending on who you ask.
If you choose to go old school, obviously you get an actual photo that can be stored physically. This means it is a memory that can be preserved, and it might feel more nostalgic being able to touch the photo.
On the other hand, a digitally stored photo can be altered (photoshop), but it is forever as long as the internet still exists. A physical photo would fade with time, which doesn't happen with a digital photo.
It is definitely easier to argue that digital photography has more advantages (they do, it is why nobody uses film anymore)
Points you can consider:
Can be transferred to the other side of the world instantly
Ability to make copies and print as many photos as you want
Can be stored on cloud/devices and be like that forever
Compare them with film photography to give a more solid response.
Answer: The unpolarized light's intensity is reduced by the factor of two when it passes through the polaroid and becomes linearly polarized in the plane of the Polaroid. When the polarized light passes through the polaroid with the plane of polarization at an angle
with respect to the polarization plane of the incoming light, the light's intensity is reduced by the factor of
(this is the Law of Malus).
Explanation: Let us say we have a beam of unpolarized light of intensity
that passes through two parallel Polaroid discs with the angle of
between their planes of polarization. We are asked to find
such that the intensity of the outgoing beam is
. To solve this we follow the steps below:
Step 1. It is known that when the unpolarized light passes through a polaroid its intensity is reduced by the factor of two, meaning that the intensity of the beam passing through the first polaroid is

This beam also becomes polarized in the plane of the first polaroid.
Step 2. Now the polarized beam hits the surface of the second polaroid whose polarization plane is at an angle
with respect to the plane of the polarization of the beam. After passing through the polaroid, the beam remains polarized but in the plane of the second polaroid and its intensity is reduced, according to the Law of Malus, by the factor of
This yields
. Substituting from the previous step we get

yielding

and finally,

Answer:
r1 -r2 = 3.75cm
Explanation:
Check the attached file for the solution