Hi, the answer for this question is element!
Hope this helped!
Plz mark brainliest!
~Nate
Answer:
The shortest braking distance is 35.8 m
Explanation:
To solve this problem we must use Newton's second law applied to the boxes, on the vertical axis we have the norm up and the weight vertically down
On the horizontal axis we fear the force of friction (fr) that opposes the movement and acceleration of the train, write the equation for each axis
Y axis
N- W = 0
N = W = mg
X axis
-Fr = m a
-μ N = m a
-μ mg = ma
a = μ g
a = - 0.32 9.8
a = - 3.14 m/s²
We calculate the distance using the kinematics equations
Vf² = Vo² + 2 a x
x = (Vf² - Vo²) / 2 a
When the train stops the speed is zero (Vf = 0)
Vo = 54 km/h (1000m/1km) (1 h/3600s)= 15 m/s
x = ( 0 - 15²) / 2 (-3.14)
x= 35.8 m
The shortest braking distance is 35.8 m
Answer: D. 0.57
Explanation:
The formula to calculate the eccentricity
of an ellipse is (assuming the moon's orbit in the shape of an ellipse):

Where:
is the apoapsis (the longest distance between the moon and its planet)
is the periapsis (the shortest distance between the moon and its planet)
Then:


This is the moon's orbital eccentricity
As per the question the mass of the boy is 50 kg.
The boy sits on a chair.
We are asked to calculate the force exerted by the boy on the chair at sea level.
The force exerted by boy on the chair while sitting on it is nothing else except the force of gravity of earth i.e the weight of the body .The direction of that force is vertically downward.
At sea level the acceleration due to gravity g = 9.8 m/s^2
Hence the weight of the boy
[m is the mass of the body]
we have m = 50 kg.
Hence w = 50 kg ×9.8 m/s^2
=490 N kg m/s^2
= 490 N
Here newton [N] is the unit of force.
Answer:
the weight is 49.1 N
Explanation:
The computation of the weight is shown below:
As we know that
= 5kg of potatoes × gravitational acceleration
= 5kg of potatoes × 9.82 m/s
= 49.1 N
Hence, the weight is 49.1 N
We simply applied the above formula in order to determine the weight