Answer:
the tension of the rope is 34.95 N
Explanation:
Given;
length of the rope, L = 3 m
mass of the rope, m = 0.105 kg
frequency of the wave, f = 40 Hz
wavelength of the wave, λ = 0.79 m
Let the tension of the rope = T
The speed of the wave is given as;

Therefore, the tension of the rope is 34.95 N
By definition we know that the force is the vector product of the vector of the current by the length with the magnetic field vector. The current in this case goes in a positive "Y" direction. If we assume that the magnetic field goes in the positive "K" direction, then the result will be in the positive "X" direction. Attached solution.
Answer:
0.776 m far Pinhole should be placed before the viewing screen
Explanation:
For circular aperture of diameter D will have a bright central maximum of diameter, width is given by

where
is wavelength of helium neon laser = 633 nm, D=10.cm, w=0.12 mm
Pinhole should be placed before the viewing screen is

Answer: If the object is at equilibrium, then the net force acting upon the object should be 0 Newton. Thus, if all the forces are added together as vectors, then the resultant force (the vector sum) should be 0 Newton.
Magnitude: 3.4 N
Direction: 161 deg
HOPE THIS HELPS
Answer:
The Balmer series refers to the spectral lines of hydrogen, associated to the emission of photons when an electron in the hydrogen atom jumps from a level
to the level
.
The wavelength associated to each spectral line of the Balmer series is given by:

where
is the Rydberg constant for hydrogen, and where
is the initial level of the electron that jumps to the level n = 2.
The first few spectral lines associated to this series are withing the visible part of the electromagnetic spectrum, and their wavelengths are:
656 nm (red, corresponding to the transition
)
486 nm (green,
)
434 nm (blue,
)
410 nm (violet,
)
All the following lines lie in the ultraviolet part of the spectrum. The limit of the Balmer series, corresponding to the transition
, is at 364.6 nm.