Electrification is widely considered as a viable strategy for reducing the oil dependency and environmental impacts of road transportation. In pursuit of this strategy, most attention has been paid to electric cars. However, substantial, yet untapped, potentials could be realized in urban areas through the large-scale introduction of electric two-wheelers.
thanks again and have to go to the store and get some rest I will be there at puno my phone is not working and I have a few questions about the week and I have a few questions about the week and I have a few questions about the week and I have a few questions about the week and I have a few questions about the week and I have a few questions about the week and I have a few questions about the week and I have a few questions about the week and I have a few questions about the week and I have a few questions about you
I think the correct answer from the choices listed above is option A. The rent is an<span> example of a monthly fixed cost for a sandwich shop. It is a fixed cost since you are required to pay for it per month. Hope this answers the question. Have a nice day.</span>
Answer:
change in height is 1.664 mm
Explanation:
Given data
drops = 3.00 mm
diameter = 5.00 cm = 0.05 mm
decrease = 350 cm^3
temperature = 95°C to 44.0°C
to find out
the decrease in millimeters in level
solution
we will calculate here change in volume so we can find how much level is decrease
change in volume = β v change in temp ...............1
here change in volume = area× height
so =
/4 × d² h
so we can say change in volume =
/4 × d² × change in height .......2
so from equation 1 and 2 we calculate change in height
( β(w) -β(g) )× v× change in temp =
/4 × d² × change in height
change in height = 4 × ( β(w) -β(g) ) v× change in temp /
/4 × d²
put all value here
change in height = 4 × ( 210 - 27 )(350 )
× (95-44) /
/4 × 0.05²
change in height is 1.664 mm
Answer:
Final velocity of electron,
Explanation:
It is given that,
Electric field, E = 1.55 N/C
Initial velocity at point A, 
We need to find the speed of the electron when it reaches point B which is a distance of 0.395 m east of point A. It can be calculated using third equation of motion as :
........(1)
a is the acceleration, 
We know that electric force, F = qE

Use above equation in equation (1) as:


v = 647302.09 m/s
or

So, the final velocity of the electron when it reaches point B is
. Hence, this is the required solution.