Answer:
1. 0.6678 atm.
2. 181.9 mm Hg.
3. 379.8 K = 106.8°C.
4. 691.8 mm Hg.
Explanation:
- We can use the general law of ideal gas: PV = nRT.
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and V are constant, and have different values of P and T "Lussac law":
<em>(P₁T₂) = (P₂T₁)</em>
<em></em>
<u><em>Q1:</em></u>
∵ (P₁T₂) = (P₂T₁)
P₁ = 0.5 atm, T₁ = 25°C + 273 = 298 K.
P₂ = ??? atm, T₂ = 125°C + 273 = 398 K.
∴ P₂ = (P₁T₂)/(T₁) = (0.5 atm)(398 K)/(298 K) = 0.6678 atm.
<u><em>Q2:</em></u>
∵ (P₁T₂) = (P₂T₁)
P₁ = 47.0 mm Hg, T₁ = 77.0 K.
P₂ = ??? mm Hg, T₂ = 25°C + 273 = 298 K.
∴ P₂ = (P₁T₂)/(T₁) = (47.0 mm Hg)(298 K)/(77 K) = 181.9 mm Hg.
<u><em>Q3:</em></u>
∵ (P₁T₂) = (P₂T₁)
P₁ = 248.0 kPa, T₁ = 0°C + 273 = 273 K. .
P₂ = 345.0 kPa, T₂ = ??? K.
∴ T₂ = (P₂T₁)/(P₁) = (345.0 kPa)(273 K)/(248.0 kPa) = 379.8 K = 106.8°C.
<u><em>Q4:</em></u>
∵ (P₁T₂) = (P₂T₁)
P₁ = 745.0 mm Hg, T₁ = 22°C + 273 = 294 K. .
P₂ = ??? mm Hg, T₂ = 0°C + 273 = 273 K.
∴ P₂ = (P₁T₂)/(T₁) = (745.0 mm Hg)(273 K)/(294 K) = 691.8 mm Hg.