Hey there!:
Molar mass of Mg(OH)2 = 58.33 g/mol
number of moles Mg(OH)2 :
moles of Mg(OH)2 = 30.6 / 58.33 => 0.5246 moles
Molar mass of H3PO4 = 97.99 g/mol
number of moles H3PO4:
moles of Mg(OH)2 = 63.6 / 97.99 => 0.649 moles
Balanced chemical equation is:
3 Mg(OH)2 + 2 H3PO4 ---> Mg3(PO4)2 + 6 H2O
3 mol of Mg(OH)2 reacts with 2 mol of H3PO4 ,for 0.5246 moles of Mg(OH)2, 0.3498 moles of H3PO4 is required , but we have 0.649 moles of H3PO4, so, Mg(OH)2 is limiting reagent !
Now , we will use Mg(OH)2 in further calculation .
Molar mass of Mg3(PO4)2 = 262.87 g/mol
According to balanced equation :
mol of Mg3(PO4)2 formed = (1/3)* moles of Mg(OH)2
= (1/3)*0.5246
= 0.1749 moles of Mg3(PO4)2
use :
mass of Mg3(PO4)2 = number of mol * molar mass
= 0.1749 * 262.87
= 46 g of Mg3(PO4)2
Therefore:
% yield = actual mass * 100 / theoretical mass
% = 34.7 * 100 / 46
% = 3470 / 46
= 75.5%
Hope that helps!
<u>Answer:</u>
<em>Here the given material is taken and mixed with water.</em>
<u>Explanation:</u>
The amount of material and water taken are same. Hence if it is not soluble in water it should make a dense and flowy paste like material and if it is soluble in water it should this and thicker density of water should remain.
If the amount of water that we are taking is more than the material will float in water if it is not soluble and lighter than water or would sink if it is heavier than water.
A stable arrangement of eight valence electrons : ³⁵Cl⁻¹
<h3>Further explanation</h3>
Chlorine is a halogen gas, located in group 17, p block
Chlorine has an atomic number of 17 and an atomic mass of 35
Electron configuration: [Ne] 3s²3p⁵
If we look at the electron configuration, then Cl will bind 1 more electron so that the configuration is stable like Argon (atomic number 18)
So by binding this one electron, chlorine forms negative ions (anions)
³⁵Cl⁻¹
B. Cl⁻² binds 2 electrons, exceeding the octet rule
C. Cl⁺¹, releases 1 electron, remains unstable
D. Cl, the neutral form of Cl, is still unstable with a 7-electron valence configuration
Multiply the volume by the density. 1 ml = 1 cm^3
1.11 g/cm^3 * 1 cm^3/mL * 386 mL = 428 g
All your units cancel out except for g which is what you would expect since you want units of mass.
The southern pacific ocean has a similar symmetric pattern to the seafloor ages of the Atlantic ocean. In the Pacific, the seafloor on one side of the youngest crust gets very old but the seafloor on the other side is much younger.