Answer:
You can do that yourself, but there's a example question below. And, if for example, I just answer your question and you don't even try to answer. it dosent matter.
Explanation:Force=Mass x Acceleration -or- F=ma
where F is the force, m is the mass, and a is the acceleration. The units are Newtons (N) for force, kilograms (kg) for mass, and meters per second squared (m/s2) for acceleration. The other forms of the equation can be used to solve for mass or acceleration.
m=F/a and a=F/m Example:
Engineers at the Johnson Space Center must determine the net force needed for a rocket to achieve an acceleration of 70 m/s2. If the mass of the rocket is 45,000 kg, how much net force must the rocket develop?
Using Newton's second law, F=ma
F=(45,000 kg)(70 m/s2) = 3,150,000 kg m/s2 F=3,150,000 N Note that the units kg m/s2 and newtons are equivalent; that is, 1 kg m/s2
<u>Answer:</u> The value of
for the reaction at 690 K is 0.05
<u>Explanation:</u>
We are given:
Initial pressure of
= 1.0 atm
Total pressure at equilibrium = 1.2 atm
The chemical equation for the decomposition of phosgene follows:

Initial: 1 - -
At eqllm: 1-x x x
We are given:
Total pressure at equilibrium = [(1 - x) + x+ x]
So, the equation becomes:
![[(1 - x) + x+ x]=1.2\\\\x=0.2atm](https://tex.z-dn.net/?f=%5B%281%20-%20x%29%20%2B%20x%2B%20x%5D%3D1.2%5C%5C%5C%5Cx%3D0.2atm)
The expression for
for above equation follows:


Putting values in above equation, we get:

Hence, the value of
for the reaction at 690 K is 0.05
Hey there!
Molar mass N2 = 28.01 g/mol
Therefore:
28.01 g N2 -------------- 6.02*10²² molecules N2
( mass N2 ?? ) ----------- 25,000 molecules N2
mass N2 = ( 25,000 * 28.01 ) / ( 6.02*10²³ )
mass N2 = 700250 / 6.02*10²³
mass N2 = 1.163*10⁻¹⁸ g
Hope that helps!
Answer:
48
Explanation:
because you add 6 and 6 and 12 to get it
Cl2(g) -------> Cl-(aq) + ClO-(aq)
2e- + Cl2(g) -------> 2Cl-(aq) [reduction]
4OH-(aq) + Cl2(g) -----------> 2ClO-(aq) + 2H2O(l) + 2e- [oxidation]
______________________________________...
2OH-(aq) + Cl2(g) --------> Cl-(aq) + ClO-(aq) + H2O(l)