The cluster that is most likely to be located in the halo of our galaxy is the diagram that shows main-sequence stars of every spectral type except O, along with a few giants and supergiants.
<h3>What are star clusters?</h3>
Star clusters are large collections of stars. Star clusters are classified into two types: Globular clusters are gravitationally bound groups of tens of thousands to millions of old stars.
Because of their location on the dusty spiral arms of spiral galaxies, they are sometimes referred to as galactic clusters. Stars in an open cluster share a common ancestor as they all formed from the same massive molecular cloud.
A typical spiral galaxy has a faint, extended stellar halo. A stellar halo is an essentially spherical population of stars and globular clusters thought to surround most disk galaxies and the cD class of elliptical galaxies. It should be noted that a halo is a spherical cloud of stars surrounding a galaxy. Astronomers have proposed that the Milky Way's halo is composed of two populations of stars.
Learn more about star on:
brainly.com/question/21379923
#SPJ1
Answer:
28.2 m/s
Explanation:
The range of a projectile launched from the ground is given by:

where
v is the initial speed
g = 9.8 m/s^2 is the acceleration of gravity
is the angle at which the projectile is thrown
In this problem we have
d = 81.1 m is the range
is the angle
Solving for v, we find the speed of the projectile:

Answer:
F = M a = M v^2 / R
If v is increased by three the force will be increased by nine,
C) is correct
Answer:
McNair graduated as valedictorian of Carver High School in 1967. In 1971, he received a Bachelor of Science degree in engineering physics, magna cu.m laude, from the North Carolina Agricultural and Technical State University in Greensboro, North Carolina.
Answer:
a) 14M
Explanation:
a)The inertia of a particle moving in a circular axis is given by,

I = Moment of inertia
M = mass of the particle
r = perpendicular distance from axis of rotation.
And by adding moment of inertia of each particle we can come to the moment of inertia of the system.
I = M
+M
+M
+M
= 14M
b) Your question is incomplete but I'll write how to find the minimum force required to give a system given angular acceleration.
Minimum force is found when applied from the furthest point to the axis of rotation in the system.
, by τ = Fr, whereτ = torque , F = Force , = perpendicular distance from axis of rotation.
For minimum force r = 3d
And also τ = Iα where I = Moment of inertia and α = angular acceleration
By combining the two equations you get minimum force as,
F = Iα/r
F' = 14M
α/3d
= 14Mαd/3