Answer:
/* C Program to rotate matrix by 90 degrees */
#include<stdio.h>
int main()
{
int matrix[100][100];
int m,n,i,j;
printf("Enter row and columns of matrix: ");
scanf("%d%d",&m,&n);
/* Enter m*n array elements */
printf("Enter matrix elements: \n");
for(i=0;i<m;i++)
{
for(j=0;j<n;j++)
{
scanf("%d",&matrix[i][j]);
}
}
/* matrix after the 90 degrees rotation */
printf("Matrix after 90 degrees roration \n");
for(i=0;i<n;i++)
{
for(j=m-1;j>=0;j--)
{
printf("%d ",matrix[j][i]);
}
printf("\n");
}
return 0;
}
It would have environmental and societal impacts
Answer:
If the heat engine operates for one hour:
a) the fuel cost at Carnot efficiency for fuel 1 is $409.09 while fuel 2 is $421.88.
b) the fuel cost at 40% of Carnot efficiency for fuel 1 is $1022.73 while fuel 2 is $1054.68.
In both cases the total cost of using fuel 1 is minor, therefore it is recommended to use this fuel over fuel 2. The final observation is that fuel 1 is cheaper.
Explanation:
The Carnot efficiency is obtained as:
Where is the atmospheric temperature and is the maximum burn temperature.
For the case (B), the efficiency we will use is:
The work done by the engine can be calculated as:
where Hv is the heat value.
If the average net power of the engine is work over time, considering a net power of 2.5MW for 1 hour (3600s), we can calculate the mass of fuel used in each case.
If we want to calculate the total fuel cost, we only have to multiply the fuel mass with the cost per kilogram.
Saturated Pressure Temperature chart for R-22 shows 45 degF at 76 psig
65-45= 20 degF superheat