Answer:
The required wall thickness is
m
Explanation:
Given:
Fluid density
![\frac{kg}{m^{3} }](https://tex.z-dn.net/?f=%5Cfrac%7Bkg%7D%7Bm%5E%7B3%7D%20%7D)
Diameter of tank
m
Length of tank
m
F.S = 4
For A-36 steel yield stress
MPa,
Allowable stress ![\sigma _{allow} = \frac{\sigma}{F.S}](https://tex.z-dn.net/?f=%5Csigma%20_%7Ballow%7D%20%3D%20%5Cfrac%7B%5Csigma%7D%7BF.S%7D)
MPa
Pressure force is given by,
![P = \rho gh](https://tex.z-dn.net/?f=P%20%3D%20%5Crho%20gh)
![P = 1200 \times 9.8 \times 4](https://tex.z-dn.net/?f=P%20%3D%201200%20%5Ctimes%209.8%20%5Ctimes%204)
Pa
Now for a vertical pipe,
![\sigma _{allow} = \frac{Pd}{4t}](https://tex.z-dn.net/?f=%5Csigma%20_%7Ballow%7D%20%3D%20%5Cfrac%7BPd%7D%7B4t%7D)
Where
required thickness
![t = \frac{Pd}{4 \sigma _{allow} }](https://tex.z-dn.net/?f=t%20%3D%20%5Cfrac%7BPd%7D%7B4%20%5Csigma%20_%7Ballow%7D%20%7D)
![t = \frac{47088 \times 8 }{4 \times 62.5 \times 10^{6} }](https://tex.z-dn.net/?f=t%20%3D%20%5Cfrac%7B47088%20%5Ctimes%208%20%7D%7B4%20%5Ctimes%2062.5%20%5Ctimes%2010%5E%7B6%7D%20%7D)
m
Therefore, the required wall thickness is
m
Since the armature is wave wound, the magnetic flux per pole is 0.0274 Weber.
<u>Given the following data:</u>
- Number of armature conductors = 144 slots
- Number of poles = 4 poles
- Number of parallel paths = 2
To find the magnetic flux per pole:
Mathematically, the emf generated by a DC generator is given by the formula;
× ![\frac{P}{A}](https://tex.z-dn.net/?f=%5Cfrac%7BP%7D%7BA%7D)
<u>Where:</u>
- E is the electromotive force in the DC generator.
- Z is the total number of armature conductors.
- N is the speed or armature rotation in r.p.m.
- P is the number of poles.
- A is the number of parallel paths in armature.
First of all, we would determine the total number of armature conductors:
×
× ![3](https://tex.z-dn.net/?f=3)
Z = 864
Substituting the given parameters into the formula, we have;
× ![\frac{4}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B4%7D%7B2%7D)
× ![2](https://tex.z-dn.net/?f=2)
<em>Magnetic flux </em><em>=</em><em> 0.0274 Weber.</em>
Therefore, the magnetic flux per pole is 0.0274 Weber.
Read more: brainly.com/question/15449812?referrer=searchResults
Explanation:
750 microvolt is your answer
please mark as brilliant
Follow @richard.gbe on Instagram for the answer