Answer:
Hello Monk7294!
Answer:
Employee education
Explanation:
The most important countermeasure for social engineering is employee education. All the employees should be trained to keep confidential data safe. As a part of security education, organizations have to provide timely orientation about their security policy to new employees. The security policy should address the consequences of the breaches.
<em>- I Hope this helps Have an awesome day!</em>
<em>~ Chloe marcus <3</em>
The following scenarios are pertinent to driving conditions that one may encounter. See the following rules of driving.
<h3>What do you do when the car is forced into the guardrail?</h3>
Best response:
- I'll keep my hands on the wheel and slow down gradually.
- The reason I keep my hands on the steering wheel is to avoid losing control.
- This will allow me to slowly back away from the guard rail.
- The next phase is to gradually return to the fast lane.
- Slamming on the brakes at this moment would result in a collision with the car behind.
Scenario 2: When driving on a wet road and the car begins to slide
Best response:
- It is not advised to accelerate.
- Pumping the brakes is not recommended.
- Even lightly depressing and holding down the brake pedal is not recommended.
- The best thing to do is take one foot off the gas pedal.
- There should be no severe twists at this time.
Scenario 3: When you are in slow traffic and you hear the siren of an ambulance behind
Best response:
- The best thing to do at this moment is to go to the right side of the lane and come to a complete stop.
- This helps to keep the patient in the ambulance alive.
- It also provide a clear path for the ambulance.
- Moving to the left is NOT recommended.
- This will exacerbate the situation. If there is no place to park on the right shoulder of the road, it is preferable to stay in the lane.
Learn more about rules of driving. at;
brainly.com/question/8384066
#SPJ1
Answer:
Explanation:
cross sectional area A = 1.9 x 2.6 x 10⁻⁶ m²
= 4.94 x 10⁻⁶ m²
stress = 42 x 9.8 / 4.94 x 10⁻⁶
= 83.32 x 10⁶ N/m²
strain = .002902 / 2.7
= 1.075 x 10⁻³
Young's modulus = stress / strain
= 83.32 x 10⁶ / 1.075 x 10⁻³
= 77.5 x 10⁹ N/m²
Answer:
a) it is periodic
N = (20/3)k = 20 { for K =3}
b) it is Non-Periodic.
N = ∞
c) x(n) is periodic
N = LCM ( 5, 20 )
Explanation:
We know that In Discrete time system, complex exponentials and sinusoidal signals are periodic only when ( 2π/w₀) ratio is a rational number.
then the period of the signal is given as
N = ( 2π/w₀)K
k is least integer for which N is also integer
Now, if x(n) = x1(n) + x2(n) and if x1(n) and x2(n) are periodic then x(n) will also be periodic; given N = LCM of N1 and N2
now
a) cos(2π(0.15)n)
w₀ = 2π(0.15)
Now, 2π/w₀ = 2π/2π(0.15) = 1/(0.15) = 1×20 / ( 0.15×20) = 20/3
so, it is periodic
N = (20/3)k = 20 { for K =3}
b) cos(2n);
w₀ = 2
Now, 2π/w₀ = 2π/2) = π
so, it is Non-Periodic.
N = ∞
c) cos(π0.3n) + cos(π0.4n)
x(n) = x1(n) + x2(n)
x1(n) = cos(π0.3n)
x2(n) = cos(π0.4n)
so
w₀ = π0.3
2π/w₀ = 2π/π0.3 = 2/0.3 = ( 2×10)/(0.3×10) = 20/3
∴ N1 = 20
AND
w₀ = π0.4
2π/w₀ = 2π/π0. = 2/0.4 = ( 2×10)/(0.4×10) = 20/4 = 5
∴ N² = 5
so, x(n) is periodic
N = LCM ( 5, 20 )