Answer:
See the detailed answer in attached file.
Explanation :
Answer:
<em>866.1 N</em>
Explanation:
The torque on the flywheel = 300 N-m
The force from the hydraulic cylinder will generate a moment on CA about point A.
The part of this moment that will be at point B about A must be proportional to the torque on the cylinder which is 300 N-m
we know that moment = F x d
where F is the force, and
d is the perpendicular distance from the turning point = 1 m
Equating, we have
300 = F x 1
F = 300 N this is the frictional force that stops the flywheel
From F = μN
where F is the frictional force
μ is the coefficient of static friction = 0.4
N is the normal force from the hydraulic cylinder
substituting, we have
300 = 0.4 x N
N = 300/0.4 = 750 N
This normal force calculated is perpendicular to CA. This actual force, is at 30° from the horizontal. To get the force from the hydraulic cylinder R, we use the relationship
N = R sin (90 - 30)
750 = R sin 60°
750 = 0.866R
R = 750/0.866 = <em>866.1 N</em>
Answer:
MOXIE is designed to generate up to 10 grams of oxygen per hour. This technology demonstration was designed to ensure the instrument survived the launch from Earth, a nearly seven-month journey through deep space, and touchdown with Perseverance on Feb
Answer:

Explanation:
The deceleration of the car on the dry pavement is found by the Newton's Law:

Where:



Likewise, the deceleration of the car on the unpaved shoulder is:



The speed just before the car entered the unpaved shoulder is:


And, the speed just before the pavement skid was begun is:


Answer:
lol contrates brother......