Answer:
v = 1.36 cm / y
Explanation:
For this exercise we must assume that the displacement of the plates is constant over time, so we will use the kinematic relationships for the uniform movement
v = d / t
We reduce the quantities to the SI system
d = 320 km (1000 m / 1km) (100 cm / 1 m)
d = 3.2 107 cm
let's calculate
v = 32.107 / 23.5 106
v = 1.36 cm / y
We want to study the impact of a sledgehammer and a wall.
Before the sledgehammer hits the wall, it has a given velocity and a given mass, so it has momentum and it has kinetic energy.
When it hits the wall, the velocity of the hammer disappears, this means that the energy is transferred to the wall, this "transfer of energy" can be thought of a force applied for a really short time on the wall, which for the third law of Newton, the force is also applied on the hammer.
This is why you feel the impact on the handle when you hit something with a hammer, this also means that some of the energy is dissipated on your arms.
Now, because the wall is made of a material usually not as strong as the head of the sledgehammer, we will see that in this interaction the wall seems more affected than the hammer, but the forces that each one experiences are exactly equal in magnitude.
If you want to learn more, you can read:
brainly.com/question/13952508
B the energy of the car. Sorry if this is not right
The answer is “Family”
Explanation- There are 18 numbered groups in the periodic table. The elements in a group have similar physical or chemical characteristics and some groups have a specific name, for example group 17 (the halogens).
Answer:
Magnets exert forces and torques on each other due to the rules of electromagnetism. The forces of attraction field of magnets are due to microscopic currents of electrically charged electrons orbiting nuclei and the intrinsic magnetism of fundamental particles (such as electrons) that make up the material. Hope this helps you! :)