Look at the title of the graph, in small print under it.
Each point is "compared to 1950-1980 baseline". So the set of data for those years is being compared to itself. No wonder it matches up pretty close !
Answer:
P = 1 x 10⁸ Pa
Explanation:
given,
radius = 2.0 ×10⁻¹⁰ m
Temperature
T = 300 K
Volume of gas molecule =


V = 33.51 x 10⁻³⁰ m³
we know,
P V = 1 . k T
k = 1.38 x 10⁻²³ J/K
P(33.51 x 10⁻³⁰) = 1 . (1.38 x 10⁻²³) x 300
P = 1.235 x 10⁸ Pa
for 1 significant figure
P = 1 x 10⁸ Pa
Hi there!
We can begin by deriving the equation for how long the ball takes to reach the bottom of the cliff.

There is NO initial vertical velocity, so:

Rearrange to solve for time:

Plug in the given height and acceleration due to gravity (g ≈ 9.8 m/s²)

Now, use the following for finding the HORIZONTAL distance using its horizontal velocity:
