1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ladessa [460]
3 years ago
10

Through what potential difference must an electron be accelerated from rest to have a de Broglie wavelength of 500 nmnm

Physics
1 answer:
Marina86 [1]3 years ago
7 0

Answer:

V = 6.04 10⁻⁶ V

Explanation:

The energy in a system is conserved so the potential energy of the system must be transformed into the kinetic energy of the electron.

              E_{p} = K

              eV = ½ m v²

              V = ½ m v²/e

Let's use the de Broglie relation

             λ= h / p

the moment is

            p = mv

let's replace

            λ = h / mv

            v = \frac{h}{m \lambda }

hence the potential energy

             V = ½ \frac{m}{e} (\frac{h}{m \lambda })²

            V = \frac{h^{2} }{2e  m \lambda^{2} }

let's reduce λ to sistem SI

             λ = 500 nm = 500 10⁻⁹ m = 5 10⁻⁷ m

let's calculate

             V = (6.63 10⁻³⁴)² / (9.1 10⁻³¹  1.6 10⁻¹⁹ (5 10⁻⁷)² )

         

             V = 6.04 10⁻⁶ V

You might be interested in
A physics teacher performing an outdoor demonstration suddenly falls from rest off a high cliff and simultaneously shouts "Help"
Digiron [165]

Answer: a) The cliff is 532.05m high

b) Her speed just before hitting the ground is 102.12 m/s

Explanation: To solve This, I'll use a sketch diagram, attached to this solution,

In 3seconds, the teacher heard the echo of her initial scream back. We can obtain the distance the teacher had fallen at the end of 3 seconds using the equations of motion,

Y1 = ut + 0.5g(t^2)

Since she's falling under the influence of gravity, her initial velocity, u = 0m/s, g = 9.8m/s2, t = 3s

Y1, distance she fell through in 3 seconds = 0.5×9.8(3^2) = 44.1m

Let the total height of the cliff be (44.1 + x); where is the remaining height of cliff that the teacher will fall through.

Using the equations of motion again, we can obtain distance travelled by the sound waves in 3s. sound waves travel with a constant speed of 340m/s, no acceleration,

Y2 = ut + 0.5g(t^2) where g = 0, u = 340m/s, t = 3seconds

Y2 = 340 × 3 = 1020m

But in 3 secs, the sound waves would have travelled through the total height of the cliff (44.1 + x) and back to the teacher's current height, x. That is, 1020 = 44.1 + x + x

x = 487.95m

So, total height of cliff = 44.1 + 487.95 = 532.05m

b) the speed of the teacher just before she hits the ground.

Using the equations of motion again,

(V^2) = (U^2) + 2gs

Where v is the final velocity to be calculated

U is the initial velocity = 0m/s

g is acceleration due to gravity = 9.8m/s2

S is the total height she fell through, that is, the height of the cliff = 532.05m

(V^2) = 0 + 2×9.8×532.05 = 10428.18

V = √(10428.18) = 102.12m/s

QED!

4 0
3 years ago
For these pictures is more or less friction needed?
antiseptic1488 [7]

Answer:

8: More

9: More

10: More

11: Less

12: Less

12: More

4 0
3 years ago
Explain why does the bowling ball decelerate as it travels along the lane
frutty [35]

The main cause of this is Friction. The more oil that is laid down, the less friction there is between the ball and the lane surface. The less friction, the harder it is for the bowler to send the ball in a curved path imparted by the spin that the bowler puts on the ball at the instant of release.

5 0
3 years ago
A small rock is thrown straight up with initial speed v0 from the edge of the roof of a building with height H. The rock travels
Crank

Answer:

v_{avg}=\dfrac{3gH+v_0^2}{v_0+\sqrt{v_0^2+2gH} }

Explanation:

The average velocity is total displacement divided by time:

v_{avg} =\dfrac{D_{tot}}{t}

And in the case of vertical v_{avg}

v_{avg}=\dfrac{y_{tot}}{t}

where y_{tot} is the total vertical displacement of the rock.

The vertical displacement of the rock when it is thrown straight up from height H with initial velocity v_0 is given by:

y=H+v_0t-\dfrac{1}{2} gt^2

The time it takes for the rock to reach maximum height is when y'(t)=0, and it is

t=\frac{v_0}{g}

The vertical distance it would have traveled in that time is

y=H+v_0(\dfrac{v_0}{g} )-\dfrac{1}{2} g(\dfrac{v_0}{g} )^2

y_{max}=\dfrac{2gH+v_0^2}{2g}

This is the maximum height the rock reaches, and after it has reached this height the rock the starts moving downwards and eventually reaches the ground. The distance it would have traveled then would be:

y_{down}=\dfrac{2gH+v_0^2}{2g}+H

Therefore, the total displacement throughout the rock's journey is

y_{tot}=y_{max}+y_{down}

y_{tot} =\dfrac{2gH+v_0^2}{2g}+\dfrac{2gH+v_0^2}{2g}+H

\boxed{y_{tot} =\dfrac{2gH+v_0^2}{g}+H}

Now wee need to figure out the time of the journey.

We already know that the rock reaches the maximum height at

t=\dfrac{v_0}{g},

and it should take the rock the same amount of time to return to the roof, and it takes another t_0 to go from the roof of the building to the ground; therefore,

t_{tot}=2\dfrac{v_0}{g}+t_0

where t_0 is the time it takes the rock to go from the roof of the building to the ground, and it is given by

H=v_0t_0+\dfrac{1}{2}gt_0^2

we solve for t_0 using the quadratic formula and take the positive value to get:

t_0=\dfrac{-v_0+\sqrt{v_0^2+2gH}  }{g}

Therefore the total time is

t_{tot}= 2\dfrac{v_0}{g}+\dfrac{-v_0+\sqrt{v_0^2+2gH}  }{g}

\boxed{t_{tot}= \dfrac{v_0+\sqrt{v_0^2+2gH}  }{g}}

Now the average velocity is

v_{avg}=\dfrac{y_{tot}}{t}

v_{avg}=\dfrac{\frac{2gH+v_0^2}{g}+H }{\frac{v_0+\sqrt{v_0^2+2gH} }{g} }

\boxed{v_{avg}=\dfrac{3gH+v_0^2}{v_0+\sqrt{v_0^2+2gH} } }

5 0
3 years ago
Transmission Lines and Health. Currents in dc transmission lines can be 100 A or higher. Some people are concerned that the elec
Blababa [14]

Calculate the magnetic field strength at the ground. Treat the transmission line as infinitely long. The magnetic field strength is then given by:

B = μ₀I/(2πr)

B = magnetic field strength, μ₀ = magnetic constant, I = current, r = distance from line

Given values:

μ₀ = 4π×10⁻⁷H/m, I = 170A, r = 8.0m

Plug in and solve for B:

B = 4π×10⁻⁷(170)/(2π(8.0))

B = 4.25×10⁻⁶T

The earth's magnetic field strength is 0.50G or 5.0×10⁻⁵T. Calculate the ratio of the line's magnetic field strength to earth's magnetic field strength:

4.25×10⁻⁶/(5.0×10⁻⁵)

= 0.085

= 8.5%

The transmission line's magnetic field strength is 8.5% of that of earth's natural magnetic field. This is no cause for worry.

8 0
4 years ago
Other questions:
  • Which of the following is an important ethical behavior for scientists?
    7·2 answers
  • Canada is the country (dash)of the united States
    6·1 answer
  • An electromagnetic wave with high frequency and high energy is A. Safe for humans. B. Is helpful to humans. C. Is helpful to hum
    14·1 answer
  • a 5.5 g dart is fired into a block of wood with a mass of 22.6 g. the wood block is initially at rest on a 1.5 m tall post. afte
    5·1 answer
  • a penny dropped into a wishing well reaches the bottom in 1.5 seconds. what was the velocity at impact? i did -9.8 X 1.5 and got
    11·1 answer
  • Why scientifically died it hurt when you stub your toe in the corner of a wall?
    7·1 answer
  • A metal cylinder measures 3.0 cm in diameter, is 12.0 cm high, and has a mass of 750 g. The cylinder hangs from a string attache
    15·1 answer
  • A force of 1.5 × 102 N is exerted on a charge of 1.4 × 10–7 C that is traveling at an angle of 75° to a magnetic field.
    11·2 answers
  • What is 1.2 x 10^5 in standard form?
    14·2 answers
  • __5. The study of weather patterns can predict the trajectory and intensity of this
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!